Unit	10 Review – Accelerated Chemistry Nam	ePo	d:
1.	What is a reaction rate and what units are used with reaction r	ates?	
2.	What is the collision theory?		
3.	List the factors that affect the rate of a reaction. Explain how e	each factor affects the rate.	
А			
В			
С			

- D E
- 4. Draw a reaction diagram for an exothermic reaction and label the following: reactants, products, activation energy, activated complex.

- 5. For the reaction 3 ClO⁻ (aq) \rightarrow ClO₃⁻ (aq) + 2 Cl⁻ (aq) doubling the concentration of ClO⁻ quadruples the initial rate of formation of ClO₃⁻. What is the rate expression for the reaction?
- 6. The reaction $C_6H_5N_2Cl(aq) + H_2O(l) \rightarrow C_6H_5OH(aq) + N_2(g) + HCl(aq)$ is first order in $[C_6H_5N_2Cl]$ and zero order in $[H_2O]$. What is the rate expression?

:	Trial	Initial	Initial	Initial Rate
		[A]	[B]	mol/L*min
	1	0.480 M	0.190 M	0.350
	2	0.480 M	0.380 M	0.350
	3	0.240 M	0.190 M	0.087

- 7. For the reaction $A + B \rightarrow AB$, the following data was obtained a. Write the rate expression for the reaction.
- 8. What 2 factors will drive a reaction to completion?
- a) _____
- b) _____
- 9. Describe a reversible reaction. Give an example.
- 10. Describe dynamic equilibrium. Give an example.

11.	At equilibrium how do the forward and reverse reaction rates compare? The forward rate the reverse rate.
12.	State Le Chatelier's Principle.
13.	What are the 3 possible stresses we can apply to a system at equilibrium?
a)	b) c)
14.	Use the reaction $(2SO_{2(g)} + O_{2(g)} \leftrightarrow 2SO_{3(g)} + heat)$ to determine what will happen (shift left/right, no change) if the following stresses are applied:
a.	SO_2 is added b. Volume is increased c. Heat is added
15.	What is the general formula for the equilibrium constant, $K_{\rm eq}$?
16.	What does the value of K_{eq} tell a chemist about a reaction if If the value of K_{eq} is greater than 1
	If the value of K_{eq} is less than 1
	Write the equilibrium constants for these reversible reactions – ALL CHEMICALS ARE GASES: $A + B \leftrightarrow C + 3D$ b. NO + $O_2 \leftrightarrow NO_3$ c. $CO_2 + H_2 \leftrightarrow CO + H_2O$

- 18. Calculate K_{eq} for reaction **17a** if the equilibrium concentrations are: [A]=0.100M, [B]=0.230M, [C]=1.17M, & [D]=2.19M.
- 19. The equilibrium constant in 17b is .025. If [NO] = .36 M and $[O_2] = .21$ M, what is the equilibrium concentration of NO₃?

20. If K_{eq} in 17c is 6.37 x 10⁻³, [CO₂] = 0.037M, [H₂] = 0.28M, and [CO] = 0.084M, calculate [H₂O].

21. Describe K_{sp}.

22. What is the generic formula for K_{sp} ? _______ 23. Write the expression for K_{sp} for the following sparingly soluble salts:

PbBr₂ _____ Ca₃(PO₄)₂ _____

24. Calculate the Ksp of $CaSO_4$ if a saturated solution has a concentration of 1.58 \times 10^-4.

25. The solubility product constant of BaCO3 is 2.6 x 10^{-9} . Calculate the solubility (in mol/L) of BaCO₃.

25. The solubility product constant of Ag₂CrO₄ is 1.1×10^{-12} . Calculate the [Ag+] in a solution of Ag₂CrO₄ at equilibrium.