Titration Lab	Name	Pd
Objective: Successfully use titrati unknown acid.	ion and the necessary math to determine the	ne concentration of an
Pre-lab Questions: Answer thoro	oughly with complete sentences (except #3)) .

- 1. What is a titration?
- 2. What is an indicator?
- 3. Write and balance the equation for the neutralization of hydrochloric acid (HCl) reacting with sodium hydroxide (NaOH).

Teacher Initials:

Materials:

1 buret	Buret clamp	Graduated cylinder	Funnel	?? M HCl
Ring stand	Erlenmeyer flask	Beakers	Phenolphthalein	0.25 M NaOH

Procedure:

- 1. Set up the buret and fill it with base according to the instructions we discussed in class.
- 2. Write down the starting volume of base.
 - Remember to estimate the last digit there should be 2 numbers after the decimal point for all buret readings!
 - Remember that burets read from top to bottom. If you have a question, ask your teacher before recording the volume.
- 3. Set up the Erlenmeyer flask with the acid.
 - Measure about 25 mL distilled water into the flask.
 - Measure 5-8 mL of acid (HCl) and add it to the flask. Record the **exact** volume of **acid** you are using in the data table. Remember to estimate the last digit!
- 4. Add 2-3 drops of indicator (phenolphthalein).
- 5. Add base until the indicator shows the end point (bubble gum pink for at least 10 seconds).
 - *If the proper end point is not reached, you must repeat the trial!!!*
- 6. Write down the ending volume of base. Calculate the total volume of base used.
- 7. Repeat for a total of 3 trials. (Only *good* trials should be recorded!)
 - You do not need to refill the burst each time. The ending volume from trial 1 can be your starting volume of base for trial 2 as long as there is enough base remaining in the burst. Ask your teacher if you're not sure.

Data:

	Trial 1	Trial 2	Trial 3
Volume of HCl used			
Ending Volume NaOH			
Starting Volume NaOH			
Volume NaOH used			

~ 1			•	
Cal	\sim 11	lot:	101	G.
$\mathbf{v}_{\mathbf{a}}$	···	La L		

- Calculate the moles of the HCl and the molarity of the HCl for each **good** trial.
 - o Show your work for the calculations below the data table and record your answers in the table.
 - o Calculate the average molarity of HCl for your trials.
 - o Record your average molarity on the board.

	Moles of HCl used					
	Molarity of HCl					
	Average Molarity of HCl					
<u>Tri</u>	al 1:					
<u>Tri</u>	al 2:					
<u>Tri</u>	al 3:					
Λ	oleraia.					
AII	alysis: 1. Class average molari	ty of HCl:				
				f HCl and the class average.		
	3. Did each group in th	e class have the same ave	erage molarity? Why or w	hy not?		

4. If you were to do this lab again, what would you do differently to improve your results? List 2.