Specific Heat & Calorimetry Virtual Lab – Accel. Name/Pd.:

Objective: Comparison of the heat exchanged by metals.

Website: http://group.chem.iastate.edu/Greenbowe/sections/projectfolder/flashfiles/thermochem/heat_metal.html

Pre-lab: Read pages 523-524 in the chemistry textbook.

- 1. What is a calorimeter?
- 2. Describe how a calorimeter works.
- 3. What household object could be used as a calorimeter and why?

Procedure: Choose two metals to work with from the menu. They must be different metals than the group across from you. You will make a prediction of which metal will raise the temperature of water the highest when a piece of warm metal is placed in cool water in a calorimeter.

- Metal A: Metal B: _____ 1. Choose your metals:
- 2. Which metal do you predict will raise the temperature of the water the most? _____ Explain your prediction. (We already know that each metal has a different specific heat, so stating this fact is not an explanation.)

3. Use the computer simulation to do your experiment.

- Use the mass and Ti listed for each of your metals. •
- Record your data in the table below. ٠

	Mass (g)	T _i (° C)	Specific Heat	T _f (°C) (same for the water & the metal in each trial)	$ \Delta \mathbf{T} (^{\circ} \mathbf{C}) $
Metal A	30.00	100.00			
Water	30.00	20.00	4.18 J/g°C		
Metal B	30.00	100.00			
Water	30.00	20.00	4.18 J/g°C		

4. Which metal raised the temperature of water the most? _____

- 5. Did your prediction (from #2) match your experimental results? Explain.
- 6. In your experiment, heat was transferred from ______ to ______ to ______
- 7. Calculate the heat that was exchanged by the *water* using the experiment listed in #4. Use the formula $q=mc\Delta T$. Show all of your work and label your answer. Be sure to indicate the sign (positive or negative).
- 8. Calculate the heat that was exchanged by the *metal* listed in #4. Use the formula $q=mc\Delta T$. Show all of your work and label your answer. Be sure to indicate the sign (positive or negative).
- 9. Without doing any experiments, what do you expect to happen to the temperature of the water if you double the mass of metal A while keeping everything else the same?

- 10. Without doing any experiments, what do you expect to happen to the temperature of the water if you double the mass of water while keeping everything else the same?
- 11. Perform the two experiments listed in #9 and #10. Did your predictions match the results of the computer simulation? Explain.
- 12. Using your textbook as a resource, explain the Law of Conservation of Energy.
- 13. Compare the values of the heat exchanged by the water and the metal (# 7 & #8). Within experimental error, was the Law of Conservation of Energy obeyed?

Activity 2: Determination of the specific heat of an unknown metal.

Choose either Metal X or Metal Y (circle your choice). Design and carry out an experiment that will help you determine the specific heat of this metal. Record your procedure, observation (data), and calculations below.

- 1. <u>Procedure:</u>
- 2. <u>Observations:</u>
- 3. <u>Calculations:</u>

4. <u>Claim</u>: The specific heat of metal _____ is _____.

Energy & Specific Heat Practice

- 1. Explain what is meant by energy.
- 2. List two units used to measure energy. _
- 3. What is the relationship between a calorie and a joule?
- 4. An exothermic reaction releases 86.5 kJ. How many kilocalories of energy are released?
- 5. A 4.50 g nugget of pure gold absorbed 276 J of heat. What was the final temperature of the gold if the initial temperature was 25.0 °C? The specific heat of gold is 0.129 J/(g * °C).
- 6. A 155 g sample of an unknown substance was heated from 25.0 °C to 40.0 °C. In the process, the substance absorbed 5696 J of energy. What is the specific heat of the substance?
- 7. Explain why you need to know the specific heat of a substance in order to calculate how much heat is gained or lost by the substance as a result of a temperature change.