\qquad

Guided Notes: Significant Figures and Dimensional Analysis

Measurements

Base Units

Quantity	Base Unit
	Second (s)
Length	
Mass	
	Kelvin (K)
Amount of Substance	

Metric Units

	Prefix
kilo (k)	
hector (h)	
deka (D)	
BASE	
deci (d)	
centi (c)	
milli (m)	

Significant Figures Rules:

Digits that are ALWAYS significant:

digits
-2.65 = \qquad sig figs
-
-3004 = \qquad sig figs
-all \qquad to the \qquad of a DECIMAL
-6.7000 = \qquad sig figs

Adding/Subtracting Rule:

- only as accurate as your \qquad
- $2.54+2.0=$
- Calculator says:
- Correct number of sig figs: \qquad

Multiplying/Dividing Rule:

- only have as many sig figs as your value with the least amount of sig figs
- $6.8 \times 1=$
- Calculator says: \qquad
- Correct number of sig figs: \qquad
Practice:
Determine the number of sig figs in the measurements below:

1. 1.006
2. 600 .
3. 0.00354
4. 5,102.0
5. 600

Calculate the following and put in the correct number of sig figs.

1. $10.2+0.08+10$
2. $0.45-0.10+0.2$
3. 12×3
4. $120 . \div 2.00$

Dimensional Analysis:

Scientific Notation:

- Scientific notation is expressed as a number between \qquad raised to a power of \qquad .
- numbers \qquad than 1 have a \qquad exponent
example: 16,200,000
scientific notation:
- numbers \qquad than 1 have a \qquad exponent
example: 0.000000568
scientific notation:

Practice:

Put the following numbers into scientific notation:

1. 1,257
2. 0.000253
3. 56,000
\longrightarrow
4. 0.00000000000458 \qquad
5. Select the largest of the following numbers.
a. $3.21 \times 10-4$
b. 5.76×104
c. $9.10 \times 10-8$
d. 7.24×108
6. Write the following number in proper scientific notation: 0.0000378

Dimensional Analysis:

- using \qquad factors to go from one \qquad to another
- CONVERSION FACTOR:
ex:

Steps:

1. Start with your known value and unit.
2. Determine the desired unit to convert to.
3. To cancel units, you must put them on the opposite side of the fraction.
4. Continue to cancel units until you have reached the desired unit.

Practice:

1. Convert 3 days to seconds
2. $22.4 \mathrm{~kg} / \mathrm{L}$ to $\mathrm{kg} / \mathrm{mL}$
3. Traveling at 65 miles/hour, how many minutes will it take to drive 350 miles to Rapid City?
