Molarity

-- measures concentration
-- solute is measured in moles
-- solution is measured in liters
-- abbreviated with a CAPITAMA

$$
M=\frac{\text { moles }}{\text { liters }}
$$

Practice:
 $M=\frac{\text { moles }}{\text { liters }}$

What is the molarity of a solution that has 10 grams of sodium sulfate in 100 mL of solution

$$
\begin{aligned}
& 10 \mathrm{~mol} \\
& 142 \cdot \frac{1820}{2}-18 \\
& \begin{array}{l}
\mathrm{Na}_{2} \mathrm{SO}_{4} \quad \log \times \frac{1 \mathrm{~mol}}{142 \mathrm{~g}}=\frac{.07}{.1}=.7 \mathrm{~N} \mathrm{~N}
\end{array} \\
& S=1 \times 32=32 \\
& 0=4 \times 16=\frac{64}{1429 / \mathrm{mol}}
\end{aligned}
$$

Rate Laws:

-- Increased concentration of a reactantually increases the rate of reaction.
-- However, increased concentration might actually have little effect on the rate of reactic
-- How can we tell?

Rate Order and Rate Laws:

$$
A+B \rightarrow C+D \quad[]=M
$$

-- General form of Rate Law: rate order with respect to A

rate constant concentration of reactant A
concentration
of reactant B

Rate Order and Rate Laws:

- Rate Laws are found experimentally
> change the concentration one reactant at a time to see how the rates are affected
- Rate units: M / s (change in molarity per second)

Rate Law Example \#1:

1. What happens to the when $[A]$ doubles? $[A] \times 2$ rates 2
2. What is the rate order of reactant A ?
3. What happens to the rate when $[B]$ triples $P B] \times 3$
4. What is the rate order of reactant B ?
5. What is the rate lay for this reaction
rate $=k$ A $][B]$

Rate Law Example \#2:

Reaction: $A \longrightarrow B+C$

Trial	$[\mathbf{A}]$	Rate (M/sec)
1	2.5	1.00
2	5.0	4.00
3	7.5	16.00

1. What happens to the rate when [A] doubles $\times 4$
2. What is the rate order of reactant A? $[A] \times 2$ rate $\times 4$
3. What is the rate law for this reaction? $\quad 2^{x}=4$

$$
\text { rate }=k(A]^{2}
$$

$$
x=2
$$

Rate Law Example \#3:

Reaction: $\mathrm{A}+\mathrm{B} \longrightarrow \mathrm{C}$

Trial	$[\mathbf{A}]$	$[\mathbf{B}]$	Rate $(\mathbf{M} / \mathbf{s e c})$
1	2.0	4.0	3.00
2	6.0	2.0	
3	6.0	4.0	3.50

1. What happens to the rate when $[A]$ triples $[A] \times 3$ rate $\times 1$
2. What is the rate order of reactant A ? $3^{x}=1 \quad x=0$
3. What happens to the rate when $[B]$ double $5 B] \times 2$ rate $\times 2$
4. What is the rate order of reactant $\boldsymbol{R}_{2} \quad 2^{y=2}$
5. What is the rate law for this reaction?

$$
\text { rate }=k[B]
$$

