Molarity

- -- measures concentration
- -- solute is measured in moles
- -- solution is measured in liters
- -- abbreviated with a CAPITAM

$$M = \frac{\text{moles}}{\text{liters}}$$

Mar 17-7:56 AM

Practice:

$$M = \frac{\text{moles}}{\text{liters}}$$

What is the molarity of a solution that has 10 grams of sodium sulfate in 100 mL of solution

grams of sodium sulfate in 100 mL of solution

$$\frac{10 \text{ mol}}{142543} = 1.00 \text{ M}$$
 $\frac{10 \text{ mol}}{1425} = 1.00 \text{ M}$
 $\frac{10 \text{ g}}{1425} = 1.00 \text{ M}$

Rate Laws:

- -- Increased concentration of a reactausually increases the rate of reaction.
- -- However, increased concentration might actually have little effect on the rate of reaction
- -- How can we tell?

Mar 17-7:56 AM

Rate Order and Rate Laws:

$$A + B \longrightarrow C + D$$
 $\begin{bmatrix} \end{bmatrix} = M$

-- General form of Rate Law: rate order with respect to A

Mar 17-7:56 AM

Rate Order and Rate Laws:

- Rate Laws are found experimentally
 - > change the concentration of the reactant at a time to see how the rates are affected
- Rate units: M/s (change in molarity per second)

Mar 17-7:56 AM

Rate Law Example #1:

Reaction: A + B \longrightarrow C

Trial	[A]- M	[B]	Rate (M/sec)				
1	<u> </u>	2.0	0.50				
2	_ 2.0	- 2.0	1.00				
3	2.0	L 6.0	3.00	المرابع ا			
What happens to the rate when [A] doubles valex							

What happens to the rate when [A] doubles

What is the rate order of reactant A? 2.

What happens to the rate when [B] triples

What is the rate order of reactant B?

What is the rate law for this rea rak=KAZL

Rate Law Example #2:

Reaction: $A \longrightarrow B + C$

Trial	[A]	Rate (M/sec)
1	_ 2.5	1.00
2	5.0	4.00
3	7.5	16.00

- 1. What happens to the rate when [A] doubles? 4 2. What is the rate order of reactant A?[A]x2 rakx4
- What is the rate law for this reaction?
 - rate=k(A)2

Mar 17-7:56 AM

Rate Law Example #3:

Reaction: A + B \longrightarrow C

Trial	[A]	[B]	Rate (M/sec)
1	2.0	4.0	3.00
2	6.0	2.0	1.50
3	6.0	4.0	3.00

- 1. What happens to the rate when [A] triples? A] x 3 rate x /
- 3x=1 x=0 What is the rate order of reactant A?
- What happens to the rate when [B] double B] x2 rate x 2
- What is the rate order of reactant (B2)

What is the rate law for this reaction? rate=k(B)