\qquad
\qquad

UNIT 7- KMT and Gas Laws

1. What is an elastic collision?
2. How does the kinetic energy of particles change when temperature changes?
3. Use KMT to describe how gases are compressible and expandable.
4. What are the 3 assumptions of KMT?
5. Use your knowledge of gas properties to describe what is happening in the following situations:
a. Your car tires appear flat in the morning after a cold night.
b. Your ears "pop" as you are driving up a mountain and increasing in elevation at quick rate.
6. If I initially have a gas at a pressure of 10 atm , a volume of 15 liters, and a temperature of 300 K , and then I raise the pressure to 12 atm and decrease the temperature to 200 K , what is the new volume of the gas?
7. If I have 20 liters of gas at a temperature of $30^{\circ} \mathrm{C}$ and a pressure of 20 atm , what will be the pressure of the gas if I raise the temperature to $45^{\circ} \mathrm{C}$ and decrease the volume to 15 liters?
8. What units do the following variables need to be in for the ideal gas law?
a. pressure: \qquad
b. volume: \qquad
c. " n ":
d. temperature: \qquad
9. If I contain 20 g of chlorine gas in a container with a volume of 40 liters and at a temperature of 300 K , what is the pressure inside the container?
10. If I have 15 moles of gas held at a pressure of 10 atm and a temperature of 500 K , what is the volume of the gas?

Unit 8 Thermochemistry

Part 1: Enthalpy and Specific Heat

11. The symbol used to represent change in enthalpy is \qquad
12. When a chemical reaction gains heat, it is an \qquad reaction, and its enthalpy value is (positive/negative)
13. When a substance goes from a solid to a liquid, it is an (endothermic/exothermic) process. The sign for $\Delta \mathrm{H}$ is \qquad .
14. $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ is an (endothermic/exothermic) process. The sign for $\Delta \mathrm{H}$ is \qquad .
15. When a chemical reaction releases heat, it is an \qquad reaction, and its enthalpy value is (positive/negative)
16. Describe the difference between temperature and heat.
17. The amount of energy required to raise the temperature of 1 gram of a substance $1^{\circ} \mathrm{C}$ is called \qquad .

Calculate the following and show your work!

18. What is the mass of a piece of iron that absorbs 1100 J of energy when its temperature changes from $25^{\circ} \mathrm{C}$ to $175^{\circ} \mathrm{C}$? (specific heat of iron: $0.450 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$)
19. How many joules of heat are needed to raise the temperature of 15.0 g of aluminum from $20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$, if the specific heat of aluminum is $0.90 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$?
20. The products in an exothermic reaction have a (greater/smaller) enthalpy than the reactants.
21. How much heat will be released when 10.0 g of sulfur reacts with excess O_{2} according to the following equation?

$$
2 \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3} \quad \Delta \mathrm{H}=-791.4 \mathrm{~kJ}
$$

22. Use the standard enthalpies of formation (pg. 975) to calculate the overall change in enthalpy for the reaction.

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})--->\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

$\mathrm{H}-\mathrm{H}$	$436 \mathrm{~kJ} / \mathrm{mol}$	$\mathrm{C}-\mathrm{H}$	$413 \mathrm{~kJ} / \mathrm{mol}$	$\mathrm{C}=\mathrm{C}$	$614 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{H}-\mathrm{Cl}$	$431 \mathrm{~kJ} / \mathrm{mol}$	$\mathrm{C}-\mathrm{C}$	$348 \mathrm{~kJ} / \mathrm{mol}$	$\mathrm{C} \equiv \mathrm{C}$	$839 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{H}-\mathrm{F}$	$567 \mathrm{~kJ} / \mathrm{mol}$	$\mathrm{C}-\mathrm{N}$	$293 \mathrm{~kJ} / \mathrm{mol}$	$\mathrm{C}=\mathrm{O}$	$799 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{N}-\mathrm{H}$	$391 \mathrm{~kJ} / \mathrm{mol}$	$\mathrm{C}-\mathrm{O}$	$358 \mathrm{~kJ} / \mathrm{mol}$	$\mathrm{O}=\mathrm{O}$	$495 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{N}-\mathrm{O}$	$201 \mathrm{~kJ} / \mathrm{mol}$	$\mathrm{C}-\mathrm{F}$	$485 \mathrm{~kJ} / \mathrm{mol}$	$\mathrm{C} \equiv \mathrm{O}$	$1072 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{O}-\mathrm{H}$	$463 \mathrm{~kJ} / \mathrm{mol}$	$\mathrm{C}-\mathrm{Cl}$	$328 \mathrm{~kJ} / \mathrm{mol}$	$\mathrm{C}=\mathrm{N}$	$615 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{O}-\mathrm{O}$	$146 \mathrm{~kJ} / \mathrm{mol}$	$\mathrm{C}-\mathrm{S}$	$259 \mathrm{~kJ} / \mathrm{mol}$	$\mathrm{N}=\mathrm{N}$	$418 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{F}-\mathrm{F}$	$155 \mathrm{~kJ} / \mathrm{mol}$	$\mathrm{Cl}-\mathrm{Cl}$	$242 \mathrm{~kJ} / \mathrm{mol}$	$\mathrm{N} \equiv \mathrm{N}$	$941 \mathrm{~kJ} / \mathrm{mol}$
				$\mathrm{C} \equiv \mathrm{N}$	$891 \mathrm{~kJ} / \mathrm{mol}$

23. Estimate the enthalpy change ($\Delta \mathrm{H}_{\mathrm{rxn}}$) using bond energies.

$$
\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}
$$

Part 2: Entropy and Gibbs Free Energy

24. Explain what a spontaneous process is.
25. Define entropy.
26. What is the symbol used to represent change in entropy?
27. Predict the sign on the change in entropy for the following equations:
a. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
b. $\mathrm{MgO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{MgCO}_{3}(\mathrm{~s})$
c. $2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{I}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g})$
d. $\mathrm{H}_{2} \mathrm{O}$ (I) $\rightarrow \mathrm{H}_{2} \mathrm{O}$ (g)
28. Copper (I) sulfide reacts with sulfur to produce copper (II) sulfide under standard conditions (298K). The process is exothermic ($\Delta \mathrm{H}^{\circ}=-26.7 \mathrm{~kJ} / \mathrm{mol}$) with a decrease in disorder $\left(\Delta \mathrm{S}^{\circ}=-19.7 \mathrm{~J} /(\mathrm{mol} \bullet \mathrm{K})\right.$). Determine the spontaneity of the reaction by calculating $\Delta \mathrm{G}^{\circ}$.

$$
\mathrm{Cu} 2 \mathrm{~S}(\mathrm{~s})+2 \mathrm{~S}(\mathrm{~s}) \rightarrow 2 \mathrm{CuS}(\mathrm{~s})
$$

29. A reaction has $\Delta \mathrm{H}^{\circ}=-100.0 \mathrm{~kJ}$ and $\Delta \mathrm{S}^{\circ}=-80.0 \mathrm{~J} / \mathrm{K}$ at 298 K . Is this reaction spontaneous?

UNIT 9- Solutions

30. What factors determine whether one substance will dissolve in another (solubility)?
31. What three factors influence the rate of solvation?
32. What are the two components of a solution? Define each component.
33. As the temperature increases, what happens to the solubility of a solid? Of a gas?
34. How is a supersaturated solution created?
35. Explain the meaning of the phrase "like dissolves like"?
36. How would you prepare $100 . \mathrm{ml}$ of a $0.500 \mathrm{M} \mathrm{HNO}_{3}$ solution if you have a 12.0 M stock solution of HNO_{3} ?
37. What volume of a 6.0 M NaCl solution can be made from 3.51 g of NaCl ?
38. How many grams of solvent are necessary to dissolve 325 g of lithium bromide at $50^{\circ} \mathrm{C}$ if the solubility of LiBr is $203 \mathrm{~g} / 100 \mathrm{~g}$ water at this temperature?
39. What is the molar concentration (molarity) of a 125 ml solution made by dissolving 34.2 g of sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$, in water?
40. What mass of water is needed to make a 1.35 m solution with 8.20 mol NaOH ?
41. Calculate the molality of a solution of 50.0 g nickel (II) chloride in 100.0 g of water.
42. 12.5 g barium chloride dissolves in 250 . ml of water. Calculate the mass percent concentration.
43. What is the new boiling point is 25.0 g of calcium chloride is dissolved in 500 ml of water?
44. Which of the following substances will affect the boiling point the most? $\mathrm{CH} 4, \mathrm{NaCl}$, or MgCl_{2} ?
