\qquad
\qquad
\mathbf{K}_{w} :

- $\mathrm{H}_{2} \mathrm{O}$ breaks down to give \qquad and \qquad
- $\mathrm{K}_{\mathrm{w}}=$ \qquad
- $\mathrm{K}_{\mathrm{w}}=$ \qquad $=$ \qquad
- So, $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$have an \qquad relationship
Practice: What is the $\left[\mathrm{OH}^{-}\right]$when $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-6}$?
pH:
- $\mathrm{pH}=$ \qquad
- acids have a \qquad
- bases have a \qquad
- neutral has a \qquad
- Increases by a factor of \qquad between numbers on the pH scale
- pH of 3 has ten times the $[\mathrm{H}+]$ of pH 4
$\mathrm{pOH}:$
- $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
- acids have a \qquad
- bases have a \qquad
- neutral has a \qquad
- increases by a factor of \qquad between numbers on the pOH scale
- pOH of 3 has ten times the $\left[\mathrm{OH}^{-}\right]$of pOH 4
pH and pOH :

pH Practice:

Calculate the pH of solutions having the following ion concentrations at 298 K .

$$
\begin{aligned}
& {[\mathrm{H}+]=1.0 \times 10^{-2} \mathrm{M}} \\
& {[\mathrm{OH}-]=8.6 \times 10^{-6} \mathrm{M}}
\end{aligned}
$$

Which of the solutions is more acidic?
pOH Practice:
What is the pH of a solution with a pOH of 12.5 ?
What is the pOH of a solution with a pH of 8.5 ?
Which of the solutions is more acidic?
Finding Ion Concentration:
$[\mathrm{H}+\mathrm{]}=$ \qquad
$\left[\mathrm{OH}^{-}\right]=$ \qquad

Calculate the $\left[\mathrm{H}^{+}\right]$and the $\left[\mathrm{OH}^{-}\right]$in a solution with a pH of 2.37.

Calculate the $\left[\mathrm{H}^{+}\right]$of a solution with a pOH of 8.5.

Strength of Acids and Bases:

- __ refer to the \# of moles of acid or base dissolved in a volume of solution
- \qquad ionize (also called strong electrolytes)
- ex: HCl --> $\mathrm{H}++\mathrm{Cl}-$
- \qquad acids and bases have \qquad ionization (establish equilibrium)
- ex: $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ <--> $\mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$

Strong Acids: $\mathrm{HCl}, \mathrm{HI}, \mathrm{HBr}, \mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HClO}_{4}$
 Strong Bases: $\mathrm{LiOH}, \mathrm{NaOH}, \mathrm{KOH}, \mathrm{RbOH}, \mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{Sr}(\mathrm{OH}) 2, \mathrm{Ba}(\mathrm{OH})_{2}$

Any acids or bases not on this list are weak!
K_{a} :

- = the value of the equilibrium constant expression for the \qquad of a \qquad acid
- \qquad acids have the \qquad K_{a} value
$\underline{K_{b}}$: \qquad
- = the value of the equilibrium constant expression for the \qquad of a \qquad base
- \qquad bases have the \qquad K_{b} value

Calculating the pH and pOH of Strong Acids and Bases

- For all strong \qquad the concentration of the acid is the concentration of the \qquad _.
- For all strong \qquad , the concentration of the base is the concentration of the \qquad .
Practice Calculating pH and pOH : Calculate the pH and pOH of the following solutions.
0.10 M HI
$2.4 \times 10^{-5} \mathrm{M} \mathrm{KOH}$

Measuring pH :

- \qquad : will change the color depending on the hydrogen ion concentration in solution, the color is then compared to a standard scale
- \qquad : more accurate than pH paper, contains electrode that are immersed in solution, will give a digital readout

Check for Understanding:

1. Calculate the pH and pOH of a solution that contains:
a. $\left[\mathrm{H}^{+}\right]=3.0 \times 10^{-8} \mathrm{M}$
b. $\quad 0.050 \mathrm{M} \mathrm{HNO}_{3}$
c. $\left[\mathrm{H}^{+}\right]=9.8 \times 10^{-2} \mathrm{M}$
2. What is the $\left[\mathrm{H}^{+}\right]$in a solution that has a pH of 4.75 ? $\left[\mathrm{OH}^{-}\right]$?
