Guided Notes: pH and pOH

Name: ______ Period: _____

<u>K</u>_w: _____

- H₂O breaks down to give _____ and _____
- 0 _____
- K_w = _____
- K_w = _____ = ____
- So, [H⁺] and [OH⁻] have an ______ relationship

Practice: What is the $[OH^-]$ when $[H^+] = 1.0 \times 10^{-6}$?

pH:

- pH = _____
- acids have a _____
- bases have a _____
- neutral has a _____
- Increases by a factor of ______ between numbers on the pH scale
 - pH of 3 has ten times the [H+] of pH 4

pOH:

- $pOH = -log[OH^{-}]$
- acids have a _____
- bases have a _____
- neutral has a _____
- increases by a factor of ______ between numbers on the pOH scale pOH of 3 has ten times the [OH⁻] of pOH 4

pH and pOH:

pH Practice:

Calculate the pH of solutions having the following ion concentrations at 298K. $[H+] = 1.0 \times 10^{-2} M$

[OH-] = 8.6 x 10⁻⁶ M

Which of the solutions is more acidic?

pOH Practice:

What is the pH of a solution with a pOH of 12.5?

What is the pOH of a solution with a pH of 8.5?

Which of the solutions is more acidic?

Finding Ion Concentration:

[H+] = _____ [OH⁻] = _____

Practice:

Calculate the $[H^+]$ and the $[OH^-]$ in a solution with a pH of 2.37.

Calculate the $[H^+]$ of a solution with a pOH of 8.5.

Strength of Acids and Bases:

- _____: refer to the # of moles of acid or base dissolved in a volume of solution
- _____: refers to degree of ion formation
- _____acids and bases ______ionize (also called strong electrolytes)
 - ex: HCl --> H+ + Cl-
- ______ acids and bases have ______ ionization (establish equilibrium)
 - ex: $HC_2H_3O_2 < --> H^+ + C_2H_3O_2^-$

Strong Acids: HCl, HI, HBr, HNO₃, H₂SO₄, HClO₄

Strong Bases: LiOH, NaOH, KOH, RbOH, Ca(OH)₂, Sr(OH)2, Ba(OH)₂

Any acids or bases not on this list are weak!

<u>Ka:</u> ___

= the value of the equilibrium constant expression for the ______ of a _____ acid
______ acids have the ______ K_a value

<u>Кь:</u>____

- = the value of the equilibrium constant expression for the ______ of a _____ base
- _____ bases have the _____ K_b value

Calculating the pH and pOH of Strong Acids and Bases

- For all strong ______, the concentration of the acid is the concentration of the _____.
- For all strong ______, the concentration of the base is the concentration of the ______.

Practice Calculating pH and pOH: Calculate the pH and pOH of the following solutions.

2.4 x 10⁻⁵ M KOH

Measuring pH:

- _____: will change the color depending on the hydrogen ion concentration in solution, the color is then compared to a standard scale
- _____: more accurate than pH paper, contains electrode that are immersed in solution, will give a digital readout

Check for Understanding:

0.10 M HI

- 1. Calculate the pH and pOH of a solution that contains:
 - a. [H⁺]= 3.0 x10⁻⁸M
 - b. 0.050 M HNO₃
 - c. [H⁺] = 9.8 x10⁻² M
- 2. What is the $[H^+]$ in a solution that has a pH of 4.75? $[OH^-]$?