Neutralization Reactions and Titration

\qquad
\qquad

Neutralization Reactions:

$\mathrm{HCl}+\mathrm{NaOH} \rightarrow$

- The general formula for a neutralization: \qquad
- Acids and bases are \qquad each other
- acids \qquad , bases \qquad
- When they combine they \qquad each other - neither \qquad nor
\qquad anymore

Practice: Neutralization Reactions

1. Complete and balance the neutralization reaction below, label the acid and the base in each reaction:
a. $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NaOH} \rightarrow$
b. $\mathrm{HCl}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow$
c. $\mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{NH}_{4} \mathrm{OH} \rightarrow$

Titrations:

Definition: adding a \qquad amount of solution of \qquad to a solution with a \qquad .
***GOAL : \qquad ***

Titration set-up: Label the parts the arrows are pointing to:

Equivalence Point:

\qquad : the point of neutralization in a titration
\qquad
endpoint (not always at $\mathrm{pH}=7$) acid and base, pH around
acid and base, pH
How do we know we reached the endpoint?
a. \qquad
b. \qquad
Sketch a graph and label the equivalence point:

Titration Calculations:

After we do the experiment, how do we determine the concentration of the known??? \qquad
Steps:

1. Write and balance the equation.
2. List what you know (vol of acid, vol of base, conc of standard, mole ratio)
3. Begin with the volume (L) of the standard solution
4. Set up dimensional analysis to determine the number of moles of the unknown (Use the known molarity and the mole to mole ratio as conversion factors)
5. Divide by the volume (L) of the unknown to find molarity of the unknown

Practice:

1. 20.0 mL of 0.100 M HCl are titrated with 19.5 mL of an NaOH solution. What is the molarity of the NaOH solution?
a. Write and balance the equation. List what you know and don't know.
b. Set up dimensional analysis to find moles for the substance of unknown concentration. (NaOH)
c. Divide the number of moles of NaOH by the volume of NaOH to find molarity.
2. In a titration, 33.21 mL of 0.3020 M strontium hydroxide $\left(\mathrm{Sr}(\mathrm{OH})_{2}\right)$ solution is required to exactly neutralize 20.00 mL of hydrofluoric acid solution (HF). What is the molarity of the hydrofluoric acid solution?
a. Write and balance the equation. List what you know and don't know.
b. Set up dimensional analysis to find moles for the substance of unknown concentration. (NaOH)
c. Divide the number of moles of NaOH by the volume of NaOH to find molarity.

Check for understanding:

A 35.00 mL sample of HBr solution is titrated to an endpoint by 14.76 mL 0.4122 M NaOH solution. What is the molarity of the HBr solution? *Show all your work*

