\qquad
\qquad

Lewis Structures Guided Notes:

Review:

1. What kind of elements make up an ionic compound?
2. What does an ionic compound do with its valence electrons?
3. What kind of elements make up a molecular (covalent) compound?
4. What does a molecular compound do with its valence electrons?

Vocab:

Lone pairs -

Shared pairs -

Steps to Drawing a Lewis Structure:

1. Determine the number of \qquad for each atom.
2. Calculate the \qquad (sets of 2) of valence electrons by dividing by 2 .
3. Place the chemical symbols in order based on:
-- the \qquad element goes in the middle
-- the element with the \qquad goes in the middle
-- \qquad ALWAYS goes in the middle
-- \qquad can NEVER go in the middle (Why?)
-- \qquad can NEVER go in the middle (Why?)
-- place the other elements around the \qquad
4. Determine how many \qquad you need (each element wants 4 pairs --octet)
5. For every pair you are \qquad that is how many \qquad you need to \qquad (double bond, triple bond)

Practice:

HCl
$\mathrm{CH}_{2} \mathrm{O}$
HCN
$\mathrm{H}_{2} \mathrm{O}$
$\mathrm{C}_{2} \mathrm{H}_{2}$

Reflection: Which elements can never have a double or triple bond?

Resonance Structures:

-- have the \qquad of elements, but a different arrangement of \qquad
-- need to have at least \qquad and at least 1 other place for the electrons to move Example: SO_{2}

Polyatomic Ion Lewis Structures:

-- same as drawing other Lewis Structures
-- negative ions, \qquad electrons
-- positive ions, \qquad electrons
-- \qquad and put the charge in the \qquad
-- may also have \qquad

Practice:
$\mathrm{NO}_{3}{ }^{-}$
$\mathrm{NH}_{4}{ }^{+}$
$\mathrm{SO}_{3}{ }^{2-}$
NO_{2}^{-}

