Lewis Structures Guided Notes:

Review:

- 1. What kind of elements make up an ionic compound?
- 2. What does an ionic compound do with its valence electrons?
- 3. What kind of elements make up a molecular (covalent) compound?
- 4. What does a molecular compound do with its valence electrons?

Vocab:

Lone pairs -

Shared pairs -

Steps to Drawing a Lewis Structure:

- 1. Determine the number of ______ for each atom.
- (sets of 2) of valence electrons by dividing by 2. 2. Calculate the
- 3. Place the chemical symbols in order based on:
 - -- the _____ element goes in the middle
 - -- the element with the _____ _____ goes in the middle
 - -- _____ ALWAYS goes in the middle
 - -- _____ can NEVER go in the middle (Why?)
 - -- _____ can NEVER go in the middle (Why?)
 - -- place the other elements around the _____
- 4. Determine how many ______ you need (each element wants 4 pairs --octet)
- 5. For every pair you are ______, that is how many ______ you need to ______ (double bond, triple bond)

Practice:

HCI	CH ₂ O	HCN	H ₂ O	C_2H_2

Reflection: Which elements can never have a double or triple bond?

Resonance Structures:

have the	of elements, but a different arrangement of
need to have at least	and at least 1 other place for the electrons to move
Example: SO ₂	

Polyatomic Ion Lewis Structures:

same as drawing of	other Lewis Structures
--------------------	------------------------

-- negative ions, _____ electrons

-- positive ions, _____ electrons

--_____ and put the charge in the ______

-- may also have _____

Practice:

 NO_3^{-}

 NH_4^+

 $\text{SO}_3{}^{2\text{-}}$

 NO_2^{-}