Guided Notes: Le'Chatelier's Principle

\qquad
\qquad

Background Knowledge:

1. What happens if you are running on a treadmill and someone increases the speed?
2. What happens if you are riding your bike and the wind picks up?
-- These are \qquad being put on you.
--Chemists put \qquad on chemical reactions.
Why do chemists want to put stresses on chemical reactions?
--Chemists put stresses on chemical reactions to produce more \qquad . -- \qquad chemists use this.

Le'Chatelier's Principle: If a \qquad is applied to a system at \qquad the system shifts in the direction that relieves the \qquad .

Changes in Concentration:

Adding Reactants

1. What will happen to the balance if you add more reactants?

2. What happens if I add more CO ?

$$
\mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

3. The reaction will shift to the \qquad .
Removing Products
4. What will happen to the balance if you remove products?

5. What happens if I remove $\mathrm{H}_{2} \mathrm{O}$?

$$
\mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

3. The reaction will shift to the \qquad .

Adding Products

1. What will happen to the balance if you add products?

2. What happens if I add $\mathrm{H}_{2} \mathrm{O}$?

$$
\mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

3. The reaction will shift to the \qquad .

Decreasing the Volume

1. What happens to the pressure when volume is decreasing? \qquad
2. What happens to the number of collisions? \qquad
3. To determine if the reaction will shift, we need to look at the number of \qquad of the reactants and products.

$$
\mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

4. Which side of the reaction contains more moles? \qquad
5. Volume only has an effect on the reaction if the \qquad of reactants differs from the number of products.
6. This reaction has more moles of \qquad , so the reaction will shift to the \qquad _.

Changes in Temperature

1. Alters both the \qquad and the \qquad .
2. Think of heat as either a \qquad or \qquad .
3. Is this an exothermic or an endothermic reaction? \qquad
4. Is heat considered a product or reactant in the reaction below? \qquad

$$
\mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O}+\text { heat }
$$

5. In this reaction, adding more heat would shift the reaction to the \qquad .

Addition of a Catalyst

1. \qquad up a reaction, but does so in both ways.
2. \qquad is just reached \qquad .

Summary: Le'Chatelier's Principle: Changes in \qquad , and \qquad make a difference in the amount of product formed in a reaction.

Practice:
For the reaction below, which change will cause the reaction to shift to the right?

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\text { heat }<-->\mathrm{CS}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g})
$$

a. decrease the concentration of dihydrogen sulfide
b. increase the pressure on the system
c. increase the temperature on the system
d. increase the concentration of carbon disulfide
e. decrease the concentration of methane

