\qquad

1. Write the equilibrium constant ($\mathrm{K}_{\text {eq }}$) expressions for the following homogeneous equilibria.
a. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}(\mathrm{g}) \leftrightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$
b. $3 \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{O}_{3}(\mathrm{~g})$
c. $2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 4 \mathrm{NO}(\mathrm{g})$
d. $4 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
e. $4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
f. $\quad \mathrm{PCl}_{5}(\mathrm{~g}) \leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
2. Write the equilibrium constant $\left(\mathrm{K}_{\mathbf{e q}}\right)$ expressions for the following heterogeneous equilibria.
a. $\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{l}) \leftrightarrow \mathrm{C}_{4} \mathrm{H}_{10}$ (g)
c. $\mathrm{CO}(\mathrm{g})+\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s}) \leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{FeO}(\mathrm{s})$
b. $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
d. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}(\mathrm{~s}) \leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

For the following problems, show all of your work including set-up (with $K_{\text {eq }}$ expression) and answer with units if needed.
3. At 773 K , the reaction $\mathbf{2 N O}(\mathbf{g})+\mathbf{O}_{2}(\mathbf{g}) \leftrightarrow \mathbf{2 N O} \mathbf{N O}_{2}(\mathbf{g})$ produces the following concentrations: [NO] = $3.49 \times 10^{-4} \mathrm{M} ;\left[\mathrm{O}_{2}\right]=0.80 \mathrm{M} ;\left[\mathrm{NO}_{2}\right]=0.25 \mathrm{M}$. Calculate the equilibrium constant $\left(\mathrm{K}_{\mathrm{eq}}\right)$ for this reaction.
4. The chemical equation for the decomposition of formamide is: $\mathbf{H C O N H}_{2}(\mathbf{g}) \leftrightarrow \mathbf{N H}_{\mathbf{3}}(\mathbf{g})+\mathbf{C O}(\mathbf{g})$ Calculate K_{eq} using the following equilibrium data: $\left[\mathrm{HCONH}_{2}\right]=0.0637 \mathrm{M},\left[\mathrm{NH}_{3}\right]=0.518 \mathrm{M}$ and $[\mathrm{CO}]=$ 0.518 M .
5. Calculate $\mathrm{K}_{\text {eq }}$ for the reaction for iron and water if the equilibrium concentrations are as follows: $\left[\mathrm{H}_{2} \mathrm{O}\right]=$ $1.00 \mathrm{M} \&\left[\mathrm{H}_{2}\right]=4.50 \mathrm{M} . \quad 2 \mathrm{Fe}(\mathbf{s})+\mathbf{3} \mathbf{H}_{2} \mathbf{O}(\mathbf{g}) \leftrightarrow \mathbf{F e}_{2} \mathbf{O}_{3} \mathbf{(s)}+3 \mathbf{H}_{2}(\mathrm{~g})$
6. At 793 K , the equilibrium constant for the reaction $\mathbf{N C l}_{3}(\mathbf{g})+\mathbf{C l}_{\mathbf{2}}(\mathbf{g}) \leftrightarrow \mathbf{N C l}_{5}(\mathbf{g})$ is 39.3.
a. Do the products or the reactants dominate in this equilibrium? Explain your answer in complete sentences.
b. If the equilibrium constant for this reaction were less than 1, would the reactants or products be dominant? Explain your answer in complete sentences.
7. The equilibrium constant is 9.36 for the following reaction: $\mathbf{A}(\mathbf{g})+3 \mathbf{B}(\mathbf{g}) \leftrightarrow 2 \mathbf{C}(\mathbf{g})$. The table below provides concentration data for two different reaction mixtures of these gases.

	A (mol/L)	B (mol/L)	C (mol/L)
Mixture 1	0.716	0.208	0.425
Mixture 2	0.562	0.491	0.789

a. Calculate the K_{eq} for each mixture. Use the back of the sheet to show your work.
b. Are both reactions at equilibrium? Explain your answer in complete sentences.

