Equilibrium Constant (K _{eq}) - Chemistry		Name:	Pd:
1.	Write the equilibrium constant (K _{eq}) expressions f	or the following homogeneous e	uilibria.
	a. $C_2H_4O(g) \leftrightarrow CH_4(g) + CO(g)$	d. $4NH_3(g) + 3O_2(g) \leftrightarrow$	→ $2N_2(g) + 6H_2O(g)$
	b. $3O_2(g) \leftrightarrow 2O_3(g)$	e. 4HCl (g) + O_2 (g) \leftrightarrow	2Cl ₂ (g) + 2H ₂ O (g)
	c. $2N_2O(g) + O_2(g) \leftrightarrow 4NO(g)$	f. $PCl_5(g) \leftrightarrow PCl_3(g)$	+ Cl ₂ (g)

- 2. Write the equilibrium constant (K_{eq}) expressions for the following heterogeneous equilibria. a. $C_4H_{10}(l) \leftrightarrow C_4H_{10}(g)$ c. $CO(g) + Fe_3O_4(s) \leftrightarrow CO_2(g) + 3FeO(s)$
 - b. $NH_4HS(s) \leftrightarrow NH_3(g) + H_2S(g)$ d. $(NH_4)_2CO_3(s) \leftrightarrow 2NH_3(g) + CO_2(g) + H_2O(g)$

For the following problems, show <u>all</u> of your work including set-up (with K_{eq} expression) and answer with units if needed.

- 3. At 773 K, the reaction **2NO** (g) + O_2 (g) \leftrightarrow **2NO**₂ (g) produces the following concentrations: [NO] = 3.49×10^{-4} M; [O₂] = 0.80 M; [NO₂] = 0.25 M. Calculate the equilibrium constant (K_{eq}) for this reaction.
- 4. The chemical equation for the decomposition of formamide is: $HCONH_2(g) \leftrightarrow NH_3(g) + CO(g)$ Calculate K_{eq} using the following equilibrium data: $[HCONH_2] = 0.0637 \text{ M}, [NH_3] = 0.518 \text{ M} \text{ and } [CO] = 0.518 \text{ M}.$
- 5. Calculate K_{eq} for the reaction for iron and water if the equilibrium concentrations are as follows: $[H_2O] = 1.00 \text{ M} \& [H_2] = 4.50 \text{ M}$. **2Fe (s) + 3H₂O (g)** \leftrightarrow **Fe**₂**O**₃ (s) + 3H₂ (g)

- 6. At 793 K, the equilibrium constant for the reaction $NCl_3(g) + Cl_2(g) \leftrightarrow NCl_5(g)$ is 39.3.
 - a. Do the products or the reactants dominate in this equilibrium? Explain your answer in complete sentences.
 - b. If the equilibrium constant for this reaction were less than 1, would the reactants or products be dominant? Explain your answer in complete sentences.
- 7. The equilibrium constant is 9.36 for the following reaction: $A(g) + 3B(g) \leftrightarrow 2C(g)$. The table below provides concentration data for two different reaction mixtures of these gases.

	A (mol/L)	B (mol/L)	C (mol/L)
Mixture 1	0.716	0.208	0.425
Mixture 2	0.562	0.491	0.789

- a. Calculate the K_{eq} for each mixture. Use the back of the sheet to show your work.
- b. Are both reactions at equilibrium? Explain your answer in complete sentences.