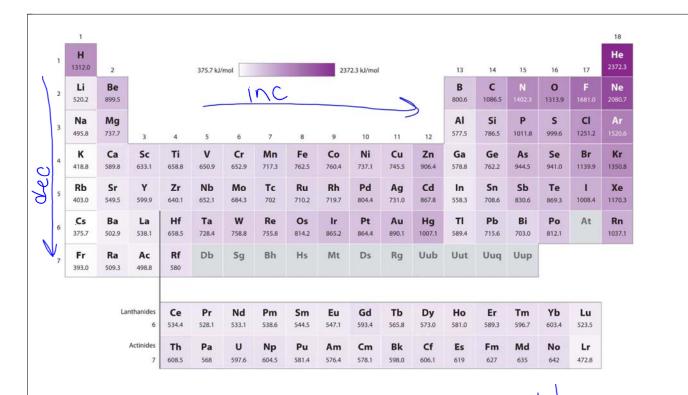
Ionization Energy

-- The energy required to remove an electron from an atom.

```
Which elements would require a LOT of energy to remove an electron? Explain. — an ion sites of the same pull from pt — noble gases by they have a full octet.

Which elements would require LITTLE energy to remove an electron? Explain.
— larger atomic radius (less pull from pt)
— alkali metals (group#1) — want to remove e-cation (metals)
```


Ionization Energy

-- <u>High ionization energy</u> means that the element does not want to remove an electron --- form an anion.

negative ion

-- <u>Low ionization energy</u> means that the element wants to remove an electron --- will form a cation

positive ions

Which element has the highest ionization energy? \vdash C Which element has the lowest ionization energy? \vdash C Explain why you think this is so.

Ionization Energy

INCREASING IONIZATION ENERGY

Decreasing

1 H Hydrogen 1,00794		ble protons being added nonmutals don't want to lose e															He total 4.003
Li Li 6.941	Be amplion 9.012182	10.11 want to lost 6											6 C Carbon 12.0107	7 N N 14,00674	8 O Ougan 15,9994	9 F 18.9984032	10 Ne 20,175
11 Na 508mm 22,999378	12 Mg Vaganian 24,3050											13 Al 26,981538	14 Si 34cm 28.0858	15 P Phosphorus 30.973761	16 S Nate 32,066	17 Cl (None 35,4527	Ar Argon 19.94
K Nonment Variation	Ca Ca Calcium 40.078	21 Sc 5cadum 44,951910	22 Ti Titerium 47,867	V V Vinedien 50.9415	Cr Chronica 51,9961	25 Mn Manganese 54,938049	26 Fe	27 Co Cital 58,933200	28 Ni Nout 58,6934	29 Cu Copper 63.546	30 Zn 200 65.39	31 Ga Gatum 69,723	Ge Germenten 72.61	33 As Anemo 24,92160	34 Se Selement T8.96	35 Br 500mmc 79,904	36 Kr 5090 8130
Rb Rb Ratidium 83,4078	38 Sr Secondom 87.62	39 Y Yasun 88,90585	40 Zr Znowiam 91,224	41 Nb Scattum 92,99638	Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo M	43 Te Todaccieni (98)	Ru Ru Rucunian 101.07	45 Rh Rhodian 102,90550	46 Pd Palladium 106,42	47 Ag Shirt 107,8682	48 Cd Calmium 112,411	49 In Indian 114.818	50 Sn Tin 118,710	51 Sb Animory 121,760	52 Te Totalian 127,60	53 I lodes 126,90447	54 Xe Xess 131.
55 Cs 	56 Ba haman 137,327	57 La 138.9055	72 Hf	73 Ta (80,9479	74 W	75 Re 186.207	76 Os	77 Ir 100mm 192.217	78 Pt //www. 195,078	79 Au Gail 196,96655	80 Hg 200.59	81 Tl Thelium 204,3833	82 Pb Load 207.2	83 Bi (temode 208,98038	84 Po (209)	85 At	86 Ri ****
Fr Freedom (223)	88 Ra Radum (226)	89 Ac (227)	Rf Reductive drawn (261)	105 Db Datains (282)	106 Sg Suborpus (263)	107 Bh Bodrien (202)	108 Hs (265)	109 Mt Memorium (266)	(209)	(272)	(277)	113	114			-	

La energy levels creates e-shielding

Practice:

Which element in each pair has the higher ionization energy?

- 1. Mg or S
- 2. Nor As
- 3. Cl or Ar
- 4. Si or Ge

Electronegativity

-- The ability of an element to attract electrons.

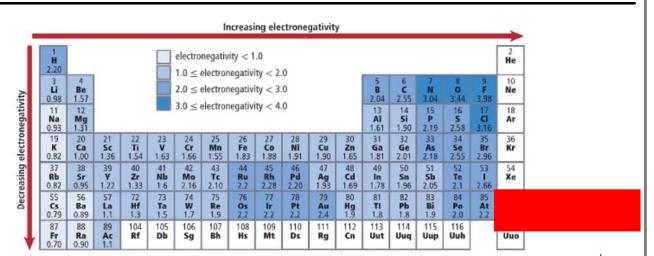
```
Which elements would really like additional electrons?

Why?

— clements that form anions (groups 15-17)

— halogens (nonmetals)

Which elements would not like to have additional


electrons? Why?

— noble gases (have an actet)

— groups 1-13 — Drm rations

(metals)
```

Electronegativity

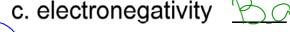
Electronegativity Values in Paulings

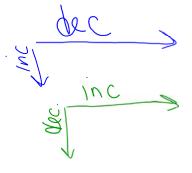
Which element is the most electronegative? Why?

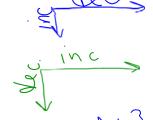
Which element is the least electronegative? Why? Fr 10545 c

Why do the noble gases not have electronegativity values?

~1/1000/ 1000 CN 004 07


Practice:


Which element in each pair has the higher electronegativity?


- 1. Mg or O
- 2. (N)or As
- 3. Clor Ne
- 4. Si or Sn

Check for Understanding:

- 1. P or Cl, which has the higher:
 - a. atomic radius
 - b. ionization energy 🛴
 - c. electronegativity (
- 2. Ca or Ba, which has the lower:
 - a. atomic radius
 - b. ionization energy
 - c. electronegativity

3.(N³-)or F which has the <u>larger</u> ionic radius?

