Ideal vs. Real Gases

- ideal gases follow the gas laws > do not really exist
> ideal at high temp and low pressure

Ideal Gas Law

- The ideal gas law is the equation of state of a hypothetical ideal gas.
- Good way to predict the behavior of many gases.
- Has limitations.

EQUATION:

PV = nRT

$$
\begin{array}{ll}
P=\text { pressure }(\mathrm{atm}) & n=\text { number of moles } \\
V=\text { volume }(\mathrm{L}) & \mathrm{R}=\text { constant }(0.0821 \text { Latm } / \mathrm{Kmol}) \\
& T=\text { temperature }(\mathrm{K})
\end{array}
$$

Ideal Gas Law Practice
What is the pressure of 1.93 moles of gas at 300 K in a 6.35 L container? (show all your work)

$$
\mathrm{PV}=\mathrm{nRT} \quad \mathrm{R}=\text { constant }(0.0821 \mathrm{~L} * \mathrm{~atm} / \mathrm{K} * \mathrm{~mol})
$$

$$
\begin{array}{ll}
P=\text { ? atm } & P(6.35 \mathrm{~L})=1.93 \mathrm{~mol} \cdot 0.0821 \cdot 300 \mathrm{~K} \\
V=6.35 \mathrm{~L} & P(6.35 \mathrm{~L})=47.54 \\
n=1.93 \mathrm{~mol} & \frac{4.35}{6.35}=\frac{6.35}{R}=0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~K} \cdot \mathrm{~mol}} \\
T & =300 \mathrm{~K}
\end{array}
$$

$$
\begin{aligned}
& \text { Ideal Gas Law Practice } \\
& \text { What is the mass of helium in a } 2.75 \mathrm{~L} \text { container } \\
& \text { at } 56 \mathrm{C} \text { and } 1.5 \mathrm{~atm} \text { ? (show all your work) } \\
& \mathrm{PV}=\mathrm{nRT} \quad \mathrm{R}=\mathrm{constant}(0.0821 \mathrm{~L} * \mathrm{~atm} / \mathrm{K} * \mathrm{~mol}) \\
& P=1.5 \mathrm{~atm} \\
& 1.5 \cdot 2.75=n \cdot 0.0821 \cdot 329 \\
& \begin{array}{l}
V=2.75 \mathrm{~L} \\
n=? \mathrm{~mol} \rightarrow g \mathrm{He}^{\frac{4.125}{27.0109}}=\frac{n \cdot 27.0109}{27.0109} \\
n=0.153 \mathrm{mdl}
\end{array} \\
& R=0.082 \mathrm{~L} \frac{\mathrm{~L} \cdot \mathrm{ntm}}{\mathrm{~mol} \cdot \mathrm{~K}} \\
& n=0.153 \mathrm{~mol} \mathrm{He} \\
& T=56^{\circ} \mathrm{C}+273=329 k \\
& 0.153 \mathrm{~mol} \mathrm{He} \times \frac{4 \mathrm{gHe}}{1 \mathrm{~mol} / \mathrm{He}}=.61 \mathrm{gHe}
\end{aligned}
$$

Check for Understanding

What is the volume of 3.8 moles of gas at 750 K and 2.2 atm ? (show all your work)
$\mathrm{PV}=\mathrm{nRT} \quad \mathrm{R}=\mathrm{constant}(0.0821 \mathrm{~L} * a t \mathrm{~m} / \mathrm{K} * \mathrm{~mol})$
$P=2.2$ atm $2.2 \cdot V=3.8 \mathrm{mll} \cdot 0.0821 \cdot 750 \mathrm{~K}$
$V=$? L
$n=3.8 \mathrm{~mol}$
$V=106.3 \mathrm{~L}$
$R=0.0821$
$T=750 \mathrm{~K}$

Jan 28-8:38 AM

