Guided Notes: Hess's Law & Heat of Formation

Hess's Law:

- Hess's Law- the overall enthalply change in a reaction is equal to the sum of the enthalpy changes of individual steps
- Example:
 - 1. $2S_{(s)} + 2O_{2(g)} \rightarrow 2SO_{2(g)}$ ∆H = -594 kJ
 - 2. $2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}$ $\Delta H = -198 \text{ kJ}$

Standard Heat of Formation

- ΔH_f the amount of energy ______ when a compound is formed from its ______ •
 - For example: $H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_{2}O_{(I)}$
- The standard heat of formation for water, $\Delta H_f = -285.83 \text{ kJ/mol}$ ٠
- Page in your book is a table of standard heats of formation ٠
- We use this information to determine the heat of formation for any reaction
- How?
 - $\Delta H^{\circ}_{rxn} =$ (_____)- (_____)

Practice Problems:

- $\Delta H^{\circ}_{rxn} = \Sigma \Delta H^{\circ}_{f}$ (products)- ΔH°_{f} (reactants) ٠
- All elements in their standard states (example: oxygen gas, solid copper, liquid mercury) will have an Enthalpy of formation of _____.
- 4 FeS (s) + 7 O₂ (g) \rightarrow 2 Fe₂O₃ (s) + 4 SO₂ (g) Δ H_{rxn} = ?

Check For Understanding

• Calculate the ΔH_{rxn} for the following using the heats of formation on pg. 975 in your book.

 $CH_{4(g)} + 2CI_{2(g)} \rightarrow CCI_{4(l)} + 2H_{2(g)}$