\qquad

Guided Notes: Gas Stoichiometry

$$
\ldots \mathrm{NH}_{3}(\mathrm{~g})+\ldots \mathrm{O}_{2}(\mathrm{~g})-->\ldots \mathrm{NO}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

- When the reactants and products are solids (s), liquids (I) or aqueous (aq), the coefficients represent:
- the number of \qquad
- When the reactants and products are gases (g) the coefficients represent:
- the number of \qquad
- volumes of \qquad in \qquad

Practice:

1. Determine the volume of hydrogen gas needed to react completely with 5.00 L of oxygen gas to form water vapor. Conditions for the gases are STP.

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})-->2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

2. If 5.0 L of N_{2} reacts at STP, how many grams of NH_{3} are produced?

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})-->2 \mathrm{NH}_{3}(\mathrm{~g})
$$

3. Calculate the volume of oxygen gas at 300 . K and 1.5 atm that is required to completely react wth 52.0 g of iron.

$$
4 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})-->2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

a. Why did we use stoichiometry first in this problem?
b. Why do we have to use the ideal gas law for this problem?
c. Why couldn't we use the molar volume in this problem?
d. When you aren't sure how to solve the problems, what will always work?

