Gas Stoichiometry

- When the reactants and products are solids (s), liquids (l) or aqueous (aq), the coefficients represent:
$>$ the number of moles
- When the reactants and products are gases (g) the coefficients represent:
$>$ the number of moles
$>$ volumes of gases in liters

Gas Stoichiometry Practice

Determine the volume of hydrogen gas needed to react completely with 5.00 L of oxygen gas to form water vapor.
Conditions for the gases ar STP. $-\frac{22.4 \mathrm{~L}}{1 \mathrm{~mol}}$

$$
\underset{X}{2 \mathrm{H}_{2}(\mathrm{~g})}+\mathrm{O}_{5 .}(\mathrm{g})-->2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Why can we use the coefficients as volume ratio?
$5.00 \mathrm{LO} \mathrm{O}_{2} \times \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{22.4 \mathrm{~L}} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{O}} \times \frac{22.4 \mathrm{~L} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{H}_{2}}=10.0 \mathrm{~L}$

Gas Stoichiometry Practice
Calculate the volume of oxygen gas at 300 K and 1.5 atm that is required to completely react with 52.0 g of iron. (Show all work)

$$
\begin{aligned}
& 4 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{XO}_{2}(\mathrm{~g})-->2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \\
& \begin{array}{ll}
P=1.5 \mathrm{~atm} & 52.0 \mathrm{~g} \mathrm{Fe} \times \frac{\mid \mathrm{ml} / \mathrm{Fe}}{56 \mathrm{~g} \mathrm{Fe}} \times \frac{3 \mathrm{molog}}{4 \mathrm{~mol} \mathrm{Fe}} \\
V= &
\end{array} \\
& n=0.696 \mathrm{~mol} \mathrm{O}_{2} \\
& R=0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \quad 1.5 \cdot \mathrm{~V}=0.696 \cdot 0.0821 \cdot 300 \\
& T=300 \mathrm{~K} \quad V=11.4 \mathrm{~L}
\end{aligned}
$$

Gas Stoichiometry Practice

Calculate the volume of oxygen gas at $300 . \mathrm{K}$ and 1.5 atm that is required to completely react with 52.0 g of iron. (Show all work)

$$
4 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})-->2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

Why did we use stoichiometry first in this problem? FC is a solid Why do we have to use the ideal gas law for this problem? not @ STP Why couldn't we use the molar volume in this problem? not @STP When you aren't sure how to solve the problems, what will always work?
ideal gas law

