Guided Notes: Entropy	Name:	Period:
2 nd Law of Thermodynamics		
Entropy (S) is a measure of the	or	of the particles that make up a system.
Entropy is a driving force in all	pro	cesses.
The spont	taneous processes	proceed in a way that the disorder of the universe
increases.		
Entropy is all about		
This is the La	w of Thermodynam	nics.
Measuring Entropy		
Change of state		
 Which state has the most entrop 	y?	
 Solids dissolving to form a solution 		
 Solutions have 	entropy than	and
0		
 Big particles broken down into little piec 	es – entropy	
• CaCO _{3(s)} \rightarrow CaO _(s) + CO _{2(g)}		
 More parts = 		
Spreading out gases		
 Greater volume = 		
Calculating Entropy		
• $\Lambda S_{ryn} = \Sigma \Lambda S_f$ (products) - $\Sigma \Lambda S_f$ (reactants)		
• Therefore:		
- Δ S _{rxn} = Getting more		
+ Δ S _{rxn} = Getting more		
Practice:		
• Which has more entropy?		
 Solid CO₂ or gaseous CO₂ 		
\circ H_2 gas at 1atm or H_2 gas at .001a	tm?	
• Predict the sign of the entropy change:		
 Solid NaCl is added to water to for 	orm a solution	
 Water vapor condenses on a cold 	d surface to form cr	ystals
Check for understanding:		
Which has more entropy?		

- A solution of potassium nitrate or solid potassium nitrate? (circle one)
- What is the sign of the change in entropy?
 - $2SO_{3(g)} \rightarrow 2SO_{2(g)} + O_{2(g)}$