Enthalpy Calculations Review

1. Determine the sign (+ or -) ΔS in the processes below:

- a. FeS (s) \rightarrow Fe²⁺ (aq) + S²⁻ (aq)
- b. $2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(g)$
- c. $2 \text{ NH}_3(g) \rightarrow N_2(g) + 3 \text{ H}_2(g)$
- 2. Which has more entropy: a sugar cube dissolved in water or a sugar cube? Explain.
- 3. How much energy is need to condense 12.6 g of water?
- 4. What is the initial temperature of a 10.5 g piece of copper (c = 0.385) that has a final temperature of 85.0°C and absorbs 130.2 J of energy?
- 5. How much energy is required to melt 18.6 g of water?
- 6. How much energy is released when the temperature of 12.2 g of water decreases from 92.5°C to 65.0°C?
- 7. Calculate the change in enthalpy using the standard enthalpy of formation for the reaction below: $2H_2O(I) \rightarrow 2H_2(g) + O_2(g)$
- 8. Use the standard enthalpy of formation to calculate the enthalpy change for the reaction below. $CH_4(g) + 2O_2(g) ---> CO_2(g) + 2H_2O(I)$
- 9. Estimate the enthalpy change (Δ Hrxn) for the reaction using bond energies: CH₄(g) + 2 O₂(g) ---> CO₂(g) + 2 H₂O(I) Average Bond Energies (kJ/mol)

H-H	436 kJ/mol	C-H	413 kJ/mol	C=C	614 kJ/mol
H-Cl	431 kJ/mol	C-C	348 kJ/mol	C≡C	839 kJ/mol
H-F	567 kJ/mol	C-N	293 kJ/mol	C=O	799 kJ/mol
N-H	391 kJ/mol	C-0	358 kJ/mol	O=O	495 kJ/mol
N-O	201 kJ/mol	C-F	485 kJ/mol	C≡O	1072 kJ/mol
O-H	463 kJ/mol	C-Cl	328 kJ/mol	C=N	615 kJ/mol
0-0	146 kJ/mol	C-S	259 kJ/mol	N=N	418 kJ/mol
F-F	155 kJ/mol	CI-CI	242 kJ/mol	N≡N	941 kJ/mol
				C≡N	891 kJ/mol

- 10. How much heat is released when 12.5 g of ethanol burns? $C_2H_5OH(I) + 3O_2 \rightarrow 2CO_2(g) + H_2O(g)$ $\Delta H = -1235 \text{ kJ}$
- 11. A reaction has a Δ H of -57 kJ and a Δ S of 21 J/K. Is the reaction spontaneous at 25 °C?

Substance	Specific Heat (J/g x °C)
H ₂ O (s)	2.03
H ₂ O (I)	4.184
H₂O (g)	2.01

Period:

Water				
ΔH _{fus} = 6.01 kJ/mol				
$\Delta H_{vap} = 40.7 \text{ kJ/mol}$				

Name: _____