\qquad Per: \qquad
Energy
-- ability to do work or transfer heat

- Two Types of Energy

1. \qquad - energy of motion

- $\mathrm{KE}=$ \qquad
- $\mathrm{m}=$ \qquad and $v=$ \qquad
- Atoms and molecules have kinetic energy

2. \qquad - due to the position or composition of an object

- \qquad - stored energy in the bonds of the atoms and molecules

Temperature vs. Heat

- \qquad - Average KE of molecules (how fast the molecules are moving)
- \qquad - energy transferred from a warmer object to a cooler one
- measures the molecules ability to do work
- \qquad - system absorbs heat (surroundings feel cool)
- \qquad - system gives off heat (surroundings feel hot)

Energy Units

- joule - SI unit for energy
- calorie - non-SI unit used for energy
- 1 cal $=$ \qquad (exactly)
- How many calories are in 75 joules?
- Calorie (capitalized) - the nutritional unit for energy
- 1Cal= \qquad cal= \qquad kcal

Conversion Practice

- I had a granola bar this morning. It had 140 Calories. calories?
joules?
kilojoules?

Law of Conservation of Energy

- \qquad can be neither \qquad nor \qquad
Heat lost by the reaction (system) = Heat gained by the surroundings (water \& universe)
- system:
- surroundings:

Specific Heat

defined as the amount of \qquad required to \qquad the temperature of 1 g of substance by \qquad
Equation: \qquad

- $q=$ \qquad
- $m=$ \qquad
- $c=$ specific heat constant $\left(\mathrm{J} / \mathrm{g}^{\circ} \mathrm{C}\right) \mathrm{pg} 520$
- $\Delta T=$ \qquad ($\left.{ }^{\circ} \mathrm{C}\right)$

- How much heat energy is needed to raise the temperature of a 55 g sample of water from $22.4{ }^{\circ} \mathrm{C}$ to $94.6{ }^{\circ} \mathrm{C}$?
- If 980 kJ of energy are added to 6.2 L of water at $25^{\circ} \mathrm{C}$, what will the final temperature of the water be?

Check For Understanding

- How much heat energy is needed to raise the temperature of a 55 g sample of aluminum from $22.4{ }^{\circ} \mathrm{C}$ to $94.6^{\circ} \mathrm{C}$? (specific heat value on pg. 520)

