Energy & Specific Heat Guided Notes

Name: Per:

Energy

- ability to do work or transfer heat
- Two Types of Energy

1. _____ – energy of motion

- KE = _____
- m= and v=
- Atoms and molecules have kinetic energy
- 2. _____ due to the position or composition of an object
 - - stored energy in the bonds of the atoms and molecules

Temperature vs. Heat

- Average KE of molecules (how fast the molecules are moving)
- ______ energy transferred from a warmer object to a cooler one .
 - measures the molecules ability to do work
- _____- system absorbs heat (surroundings feel cool)
- _____- system gives off heat (surroundings feel hot)

Energy Units

•

- joule SI unit for energy ٠
- calorie non-SI unit used for energy •
 - 1cal= _____(exactly) о
 - How many calories are in 75 joules?
- Calorie (capitalized) the nutritional unit for energy ٠
 - 1Cal= cal= kcal 0

Conversion Practice

• I had a granola bar this morning. It had 140 Calories. calories?

joules?

kilojoules?

Law of Conservation of Energy

- _____ can be neither _____ nor _____ <u>Heat lost by the reaction (system) = Heat gained by the surroundings (water & universe)</u>
- system: _____
- surroundings: ______

Specific Heat

defined as the amount of ______ required to ______ the temperature of 1 g of substance by ______

Equation: _____

- q=_____
- m=_____
- c = specific heat constant (J/g•C) pg 520
- ΔT = _____ (°C)
 Specific Heat 1/g

Substance	@ 25∘C
Water (l) (liquid)	
Water (s) (ice)	
Water (g) (steam)	

Practice Problems

- How much heat energy is needed to raise the temperature of a 55g sample of water from 22.4 °C to 94.6 °C?
- If 980 kJ of energy are added to 6.2L of water at 25°C, what will the final temperature of the water be?

Check For Understanding

• How much heat energy is needed to raise the temperature of a 55 g sample of aluminum from 22.4 °C to 94.6 °C? (specific heat value on pg. 520)