Electron Orbitals, Diagrams, & Configurations Notes

Schrodinger

•

- Model was based on mathematics
- Based on energy levels, but the exact path of the electron is not defined
- ______ = the liklelihood of finding the electron in a certain position
- Electrons have 90% probability of occupying that region in space = ________
- Each orbital has a maximum of ______ electrons

Each energy level (n) has energy sublevels

- s= _____ _____ orbital
 - Maximum of _____ electrons
 - p=_____
 - _____ orbitals
 - Maximum of _____ electrons
 - d= _____ orbitals
 - Maximum of _____ electrons
- f= _____
 - _____ orbitals
 - Maximum of _____ electrons

Electron Configurations

- Way electrons are arranged around the nucleus of an atom
- 3 different types of electron configurations
 - Orbital configuration
 - Electron configuration
 - Noble gas configuration

Order of Orbital Filling

- Use the periodic table to help you
- Know where the different blocks are on the periodic table
 - s, p, d, & f
 - Know the maximum number of electrons in each sublevel
- Read from left to right across the period beginning with hydrogen and stopping when you get to your element.

Rules for all Electron Configurations

- 1. ______- electrons fill lowest energy levels first (1s 2s 2p 3s 3p 4s 3d 4p etc)
- 2. _____- only 2 electrons can be placed in an orbital
 - The electrons must have opposite spins (clockwise and counter clockwise)
- 3. _____- electrons entering orbitals of equal energy will fill one into each orbital with the same spin & then add a second spin when all contain one

Orbital Diagrams

- Includes a ______ for each of the atom's orbitals, ______ represent electrons
 - An empty box represents an _____ orbital
 - A box with one ______ represents an orbital with ______ electron
 - A box with _____ arrows (one up and one down) represents a _____ orbital
 - Boxes should be labeled with the _____ and _____ (s, p, d, f)
- You can use an orbital diagram to ______ an element

Electron Configuration

- Sometimes called _______ electron configurations because all electrons are in their ______
 possible energy levels
- Steps for writing a ground state electron configuration:
 - Start from ______
 - Write _____ level (1-7)
 - Write ______ (s,p,d,f)
 - Write number of ______ in the sublevel as an ______ (superscript)
 - Stop at the desired number of ______

Practice

- Draw the orbital diagram for the following elements:
 - Oxygen
 - Titanium
 - Boron
- Write the electron configuration for the following elements:
 - Cobalt (Co)

Tungsten (W)

Electron Configuration

- Elements can be identified by their ending electron configurations
 - Examples:
 - 3d⁸
 - 2p⁴

- 5s¹
- 1s²