Additional Concentration Units & Colligative Properties

- 1. What is the molality of a solution containing 10.0 g Na₂SO₄ dissolved in 1000.0 g of water?
- 2. What is the molality of a solution containing $30.0 \text{ g } C_{10}H_8$ dissolved in 500.0 g of toluene?
- 3. Calculate the molality of the following solutions: a. 15.7 g NaCl in 100.0g H_2O

b.	20.0 g CaCl ₂ in 700.0 g H ₂ O

c. 3.76 g NaOH in 0.850 L H₂O

Solvent	Bolling Point (°C)	к _b (°С/тт)
water	100	0.512
ethanol	78.5	1.22
benzene	80.1	2.53

Colvert Doiling Doint (9C) k (9C/m)

Solvent	Freezing Point (°C)	k _f (°C/m)
water	0	1.86
ethanol	-114.1	1.99
benzene	5.5	5.12

For the following problems use Table 5 on page 500 for the K_b values and Table 6 on page 502 for the K_f values.

- 4. What are the boiling and freezing point of a 0.625m aqueous solution of any nonvolatile, nonelectrolyte solute?
- 5. What are the boiling point and freezing point of a 0.40m solution of sucrose in ethanol? ($k_b = 1.22^{\circ}$ C/m, boiling point = 78.5°C; k_f = 1.99°C/m, freezing point = -114.1°C)
- 6. A lab technician determines the boiling point elevation of an aqueous solution of a nonvolatile, nonelectrolyte to be 1.12 °C. What is the solution's molality?
- 7. A student dissolves 0.500 mol of a nonvolatile, nonelectrolyte solute in one kilogram of benzene (C₆H₆). What is the boiling point elevation of the resulting solution? ($k_b = 2.53^{\circ}C/m$, boiling point = 80.1°C)
- 8. Calculate the freezing point and boiling point of each of the following solutions:
 - a. 2.75m NaOH in water
 - b. 0.58m of water in ethanol
 - c. 1.26m of naphthalene (C₁₀H₈) in benzene

Name:

Use the phase diagrams to answer the following questions:

- 11. What is the normal freezing point of the substance?
- 12. What is the normal melting point of the substance?
- 13. What is the normal boiling point of the substance?
- 14. What phase will the substance be in at STP? ______

- 15. What letter represents the triple point? _____
- 16. What phase change is happening between letter E and letter G?
- 17. What phase is letter F in? _____
- 18. What is happening to the substance at letter D? ____