Averag	ge Atomic Mass: Guided Notes	Name:	Pd:		
Objecti	ive: To define average atomic mass and ca	Iculate a weighted average			
Review	v: Isotopes: Atoms of the same element w	vith a different # of	, so the	is different. So, in	
a large	sample of lithium you will find some atom	is with a mass of, and s	ome atoms with a mass of	, and some	
atoms v	with a mass of				
Average	<u>e Atomic Mass</u>				
1.	What is an average?				
2.	How do we calculate an average?				
3.	A weighted average is a way to find an average using				
4.	How do we find %?				
5.	Number: Protons + Neutrons, Mass of 1 atom, Whole #, Not on periodic table				
6.	Atomic Mass: Average of <u>all</u> the atoms of an element, Decimal #, On the periodic table				
7.	What is the equation used to find average				
	average atomic mass =				
	What does amu stand for?				
9.	Mass is usually measured in			·	
10.					
11.	. Average atomic mass is closest in mass to	o the abundant iso	tope & between the mass	es of the smallest &	
	largest isotope.	argest isotope.			

12. Example #1: Calculate the average atomic mass of Boron.

13. <u>Example #2:</u> Chlorine has two naturally occurring isotopes Chlorine-35 and Chlorine-37. The average atomic mass for Chlorine is 35.453. Without doing any calculations, which isotope is more abundant? Why?

 Example #3: The atomic mass of rubidium is 85.4678 amu, the naturally occurring isotopes are ⁸⁵Rb = 84.9117 amu and ⁸⁷Rb = 86.9086 amu. Determine the percent abundance of each isotope.

15. <u>Example #4:</u> The atomic mass of Thallium is 204.3833 amu. The two stable isotopes are thallium-203 and thallium-205. Calculate the percent abundance of each isotope.

16. <u>Example #5:</u> Naturally occurring europium (Eu) consists of two isotopes was a mass of 151 and 153. Europium-151 has an abundance of 48.03% and Europium-153 has an abundance of 51.97%. What is the atomic mass of europium?

17. <u>Example #6:</u> Antimony has two naturally occurring isotopes. The mass of antimony-121 is 120.904 amu and the mass of antimony-123 is 122.904 amu. Using the average mass from the periodic table, find the abundance of each isotope.

18. Check for Understanding:

Element "X" has 2 isotopes. X-63 has a mass of 62.93 amu and is 69.2% of the total. X-65 is 30.8% of the total with a mass of 64.93 amu. What is element X?