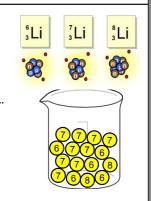
Homework Check:

Protons	Neutrons	Electrons	Mass Number	Isotope Notation #1	Isotope Notation #2
1	0	1	1	Hydrogen-1	Ή
18	20	18	38	Argon-38	36Ar
92	118	92	210	Uranium-210	204
80	100	80	180	Mercury-180	1834
40	50	40	90	Zirconium-90	902r
77	91	77	168	Iridium-168	168tr


Average Atomic Mass

Review: Isotopes

Atoms of the same element with a different # of neutrons, so the mass is different

So, in a large sample of Lithium...
you will find some atoms

with a mass of 6, and some atoms with a mass of 7, and some atoms with a mass of 8

Sep 7-3:11 PM

Sep 7-3:15 PM

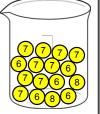
What is an average?

typical value in a set of data

How do we calculate an average?

$$\frac{\mathsf{D}^{\mathsf{X}}}{\mathsf{D}^{\mathsf{X}}}\cdots$$

A Weighted Average is...


A way to find an average using percentages

Using Percent:

% = Part / Whole x 100

What is the percent of 7's in the beaker?

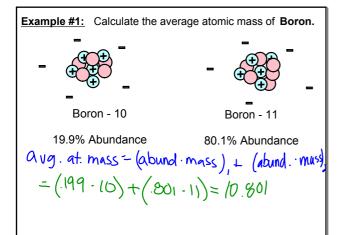
 $\frac{9}{16}$ x 100 = 56%

Sep 7-3:22 PM Sep 7-3:22 PM

Terms

Mass Number	Average Atomic Mass		
= protons + neutrons	average mass of all the atoms of an element		
mass of 1 atom	decimal number		
whole number	on the periodic table		
not on the periodic table			

Calculating Average Atomic Mass


Abundance₁ x Mass₁ + Abundance₂ x Mass₂ ...

Mass is usually measured in amu (atomic mass units) Abundance is a percent written as a decimal

- Abundance is the percentage of time that a particular isotope occurs in nature
- Average atomic mass is closest in mass to the **most** abundant isotope & between the masses of the smallest and largest isotopes

Sep 7-3:23 PM

Sep 7-3:36 PM

Example #2- Chlorine has two naturally occurring isotopes, chlorine-35 and chlorine-37. The average atomic mass for chlorine is 35.453. Without doing any calculations, which isotope is more abundant? Why?

Sep 7-3:39 PM Sep 7-3:39 PM

Example #3: The atomic mass of rubidium is 85.4678 amu. The naturally occuring isotopes are $^{85}Rb = 84.9117$ amu and $^{37}Rb = 86.9086$ amu. Determine the percent abundance of each sotope.

95.4678 = 84.9117 \(\) + 86.9086 \(\) \(

Example #4: The atomic mass of Thallium is 204.3833 amu. The masses for the two stable isotopes are 202.9723 amu for thallium-203 and 204.9744 amu for thallium-205. Calculate the percent abundance of each isotope.

Sep 7-3:39 PM

Sep 7-3:39 PM

Example #4: The atomic mass of Thallium is 204.3833 amu. The masses for the two stable isotopes are 202.9723 amu for thallium-203 and 204.9744 amu for thallium-205. Calculate the percent abundance of each isotope. $204.3633 = 202.4723 \times 204.9744 \times 204.9744 \times 204.3633 = 202.9723(1-y) + 204.9744 \times 204.3633 = 202.9723(1-y) + 204.9744 \times 204.3633 = 202.9723 - 202.9723y + 204.9744 \times 204.3633 = 202.9723 - 202.9723y + 204.9744 \times 204.3633 = 202.9723 - 202.9723 \times 204.9744 \times 204.3633 = 202.9723 \times 204.9723 \times 204.9744 \times 204.3633 = 202.9723 \times 204.9723 \times 204.9744 \times 204.3633 = 202.9723 \times 204.9723 \times 204.9724 \times 204.9724 \times 204.9744 \times 20$