Atomic and Ionic Radius Worksheet - Accel Chemistry Name: \qquad
\qquad
Use the periodic table to answer the following questions:

1. Which element has the largest radius?
2. Which element has the smallest radius?
3. Does atomic radius generally increase or decrease across (L to R) a period? \qquad
4. Does atomic radius generally increase or decrease down a group?
5. Circle the member of each pair below that is the larger atom.
a. Mg
Sr
b. Sr
Sn
c. Ge
Sn
6. Circle the member of each pair below that is the smaller atom.
a. Ge
Br
b. Cr
W
c. Li
7. Put the following elements in order of increasing (smallest to largest) atomic radius.
a. $\mathrm{P}, \mathrm{Cl}, \mathrm{Br}$
b. $\mathrm{Mg}, \mathrm{Li}, \mathrm{Ca}$
8. Put the following elements in order of decreasing (largest to smallest) atomic radius.
a. $\mathrm{B}, \mathrm{F}, \mathrm{Al}$
b. $\mathrm{Sb}, \mathrm{In}, \mathrm{Pb}$

Use your notes and book to answer the following questions: Give the tendency for each trend across a period and down a group. Then explain why we see each trend.

1. Atomic Radius (pg. 187-188 Chemistry Book)

	Trend	
Period		
Group		

2. Ionic Radius (pg. 189-190 Chemistry Book)

	Trend	
Positive ions		
Negative ions		

3. Circle the member of each pair below that is the larger atom.
a. Sc
Zn
c. In
Sb
e. $R b$
Li
b. He
Xe
d. Po
Hg
f. Te
0
4. For each of the following pairs, circle the one that has a larger radius.
a.Mg
Mg^{2+}
c. Ca^{2+}
Ba^{2+}
e. Na^{+}
Al^{3+}
b.S
S^{2-}
d. Cl^{-}
I^{-}
f. P^{3-}
P
5. For each of the following pairs, circle the one that has the smaller radius.
a. C
F
c. ${ }^{-}$
I
e. S^{2-}
O^{2-}
b. Be
Be^{2+}
d. Rb^{+}
Sr^{2+}
f. Ne
Kr
6. Put the following elements in order of increasing (smallest to largest) atomic radius.
a. $\mathrm{K}, \mathrm{Cs}, \mathrm{Ca}$
b. $\mathrm{S}, \mathrm{Si}, \mathrm{Ge}$
