Unit 10 Review Quiz: Accel Chem.

- 1. Which of the following would NOT increase the rate of a reaction?
 - a. Catalyst
 - b. Increasing the temperature
 - c. Increasing the surface area
- 2. In order for a reaction to occur...
 - a. Reactants must collide
 - b. Reactants must collide with enough energy
 - c. Reactants must collide in the correct orientation and have enough
 - d. Reactants must collide in the correct orientation, with enough energy and be at STP
- 3. What do you call the minimum amount of energy for a reaction to occur?
 - a. Activated complex
 - b. Reaction rate
- 4. What states of matter are NOT included in the equilibrium expression?
 - a. Gases and aqueous
 - b. Gases and liquids
- 5. What is the equilibrium constant for N₂ (g) + O₂ (g) \rightarrow 2NO(g)?
 - a. $[N_2][O_2]/[NO]$ b. $[NO]^2/[N_2][O_2]$

- c. [2NO]/[N]²[O]² d. $[2NO]/[N_2][O_2]$
- 6. When you see a molecule in [], what kind of measurement does that represent? a. the number of moles c. the concentration, in m

 - b. the volume
- 7. Which of the following is an indication that a reaction has gone to completion?
 - a. the production of a gas
 - b. the formation of a precipitate
- 8. What is true about the forward and reverse reactions at equilibrium?
 - a. the forward reaction is always faster
 - b. the reverse reaction is always faster
 - c. both the forward and reverse reaction are at the same rate
 - d. impossible to tell without experimentation
- 9. What principle states that a reaction will shift to relieve a stress applied to the system?
 - a. 1st Law of Thermodynamics
 - b. 2nd Law of Thermodynamics
- 10. Given the reaction: $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g) + heat$; what will happen to the equilibrium when you add heat?
 - a. the reaction will shift right
 - b. the reaction will shift left
- 11. What stress can be applied to the following reaction to produce more $O_2(g)$? $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g) + heat$
 - a. add heat

- b. add $SO_2(g)$ 12. The reaction has the following equilibrium concentrations: $[CO_2] = 0.755 \text{ M}$, $[H_2] = 0.875 \text{ M}$, [CO] = 0.463 M. Calculate the value of the equilibrium constant. $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(I)$
 - a. 1.06
 - b. 1.43

- 13. What does the value of the Keg from #12 tell you about the reaction?

a. the reactants are favored

- b. the products are favored
- c. neither the products nor the reactants are favored
- d. a catalyst was added to the reaction

- d. Add more reactants
- e. Add more products

c. Necessary energy d. Activation energy

d. Solids and liquids

c. Only gases are included

- c. both a and b
- d. none of the above

d. the concentration, in M

- - c. Le Chatelier's Principle
 - d. Ideal Gas Law
 - - c. the equilibrium will remain unaffected
 - d. the reaction will proceed faster
 - c. remove SO₃(g)
 - d. add a catalyst
 - c. 0.537

 - d. 0.701

Use the energy diagram to the right to answer questions 14-16.

14. What is the activation energy for the reaction represented in the graph above?

- a. 103 kJ
- b. 45 kJ
- c. 58 kJ
- d. 10 kJ
- 15. Which of the following represents the energy of the reactants?
 - a. 10 kJ
 - b. 45 kJ
 - c. 103 kJ
 - d. 55 kJ
- 16. What is true about the reaction represented in the figure?
 - a. the reaction is endothermic
 - b. the reaction is exothermic
 - c. the reactants need to gain 103 kJ of energy for the reaction to proceed
 - d. there is a catalyst present in the reaction
- Use the graph to the right to answer questions 17-18.
 - 17. Which letter represents the activated complex (transition state)?
 - a. A
 - b. B
 - c. C
 - d. D
 - 18. Which letter represents the activation energy?
 - a. A
 - b. B
 - c. C
 - d. D

19. Which of the following describes how a catalyst increases the rate of a reaction?

- a. a catalyst shifts equilibrium to the right
- b. a catalyst shifts equilibrium to the left

c. a catalyst lowers the activation energy required for a reaction

d. a catalyst participates in the reaction to speed it up and changes the products

- 20. A substance that has a very low Ksp would be..
 - a. very soluble

b. slightly soluble

- 21. What is the rate law for the reaction represented in chart?
 - a. rate = k[A]²
 - b. rate = $[A]^2$
 - c. rate = $k[A]^2[B]$
 - d. rate = $k[A]^2[B]^1$
- 22. What is the Ksp for the sparingly soluble salt $Ca_3(PO_4)_2$?
 - a. Ksp = $[Ca^{2+}]^3 [PO_4^{3-}]^2$
 - b. Ksp = [Ca²⁺][PO³⁻]⁴
 - c. Ksp = $3[Ca]2[PO_4^{3-}]$
 - d. Ksp = $[Ca^{2+}][PO^{3-}]$
- 23. Calculate the solubility of MgCO₃. (Ksp MgCO₃ = 6.4×10^{-6})
 - a. 2.5 x 10⁻³
 - b. 5.1 x 10⁻³
 - c. 4.1 x 10⁻¹¹

24. Calculate the [Ag⁺] in a solution of Ag₂CrO₄. (Ksp = 1.1×10^{-12})

- a. 2.1 x 10⁻⁶
- b. 1.0 x 10⁻⁶
- c. 6.5 x10⁻⁵
- d. 1.3 x 10⁻⁴

- c. would favor the reactants
- d. would favor the products

Trial	Initial	Initial	Initial Rate
	[A]	[B]	mol/L*min
1	0.480 M	0.190 M	0.350
2	0.480 M	0.380 M	0.350
3	0.240 M	0.190 M	0.087

d. 8.2 x 10⁻¹¹