Unit 10 Review Quiz: Accel Chem.

1. Which of the following would NOT increase the rate of a reaction?
a. Catalyst
d. Add more reactants
b. Increasing the temperature
e. Add more products
c. Increasing the surface area
2. In order for a reaction to occur...
a. Reactants must collide
b. Reactants must collide with enough energy
c. Reactants must collide in the correct orientation and have enough
d. Reactants must collide in the correct orientation, with enough energy and be at STP
3. What do you call the minimum amount of energy for a reaction to occur?
a. Activated complex
c. Necessary energy
b. Reaction rate
d. Activation energy
4. What states of matter are NOT included in the equilibrium expression?
a. Gases and aqueous
c. Only gases are included
b. Gases and liquids
d. Solids and liquids
5. What is the equilibrium constant for $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})$?
a. $\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right] /[\mathrm{NO}]$
b. $[\mathrm{NO}]^{2} /\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]$
c. $\quad[2 \mathrm{NO}] /[\mathrm{N}]^{2}[\mathrm{O}]^{2}$
d. $[2 \mathrm{NO}] /\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]$
6. When you see a molecule in [], what kind of measurement does that represent?
a. the number of moles
c. the concentration, in m
b. the volume
d. the concentration, in M
7. Which of the following is an indication that a reaction has gone to completion?
a. the production of a gas
c. both a and b
b. the formation of a precipitate
d. none of the above
8. What is true about the forward and reverse reactions at equilibrium?
a. the forward reaction is always faster
b. the reverse reaction is always faster
c. both the forward and reverse reaction are at the same rate
d. impossible to tell without experimentation
9. What principle states that a reaction will shift to relieve a stress applied to the system?
a. 1st Law of Thermodynamics
c. Le Chatelier's Principle
b. 2nd Law of Thermodynamics
d. Ideal Gas Law
10. Given the reaction: $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{SO}_{3}(\mathrm{~g})+$ heat; what will happen to the equilibrium when you add heat?
a. the reaction will shift right
c. the equilibrium will remain unaffected
b. the reaction will shift left
d. the reaction will proceed faster
11. What stress can be applied to the following reaction to produce more $\mathrm{O}_{2}(\mathrm{~g})$? $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{SO}_{3}(\mathrm{~g})+$ heat
a. add heat
c. remove $\mathrm{SO}_{3}(\mathrm{~g})$
b. add $\mathrm{SO}_{2}(\mathrm{~g})$
d. add a catalyst
12. The reaction has the following equilibrium concentrations: $\left[\mathrm{CO}_{2}\right]=0.755 \mathrm{M},\left[\mathrm{H}_{2}\right]=0.875 \mathrm{M},[\mathrm{CO}]=0.463 \mathrm{M}$. Calculate the value of the equilibrium constant. $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
a. 1.06
b. 1.43
c. 0.537
d. 0.701
13. What does the value of the Keq from \#12 tell you about the reaction?
a. the reactants are favored
b. the products are favored
c. neither the products nor the reactants are favored
d. a catalyst was added to the reaction

Use the energy diagram to the right to answer questions 14-16.
14. What is the activation energy for the reaction represented in the graph above?
a. $\quad 103 \mathrm{~kJ}$
b. 45 kJ
c. 58 kJ
d. 10 kJ
15. Which of the following represents the energy of the reactants?
a. 10 kJ
b. 45 kJ
c. 103 kJ
d. 55 kJ
16. What is true about the reaction represented in the figure?

a. the reaction is endothermic
b. the reaction is exothermic
c. the reactants need to gain 103 kJ of energy for the reaction to proceed
d. there is a catalyst present in the reaction

Use the graph to the right to answer questions 17-18.
17. Which letter represents the activated complex (transition state)?
a. A
b. B
c. C
d. D
18. Which letter represents the activation energy?
a. A
b. B
c. C

Reaction Coordinate
d. D
19. Which of the following describes how a catalyst increases the rate of a reaction?
a. a catalyst shifts equilibrium to the right
b. a catalyst shifts equilibrium to the left
c. a catalyst lowers the activation energy required for a reaction
d. a catalyst participates in the reaction to speed it up and changes the products
20. A substance that has a very low Ksp would be..
a. very soluble
b. slightly soluble
21. What is the rate law for the reaction represented in chart?
a. \quad rate $=k[A]^{2}$
b. \quad rate $=[\mathrm{A}]^{2}$
c. rate $=k[A]^{2}[B]$
d. \quad rate $=k[A]^{2}[B]^{1}$
22. What is the Ksp for the sparingly soluble salt $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?
a. $K s p=\left[\mathrm{Ca}^{2+}\right]^{3}\left[\mathrm{PO}_{4}{ }^{3-}\right]^{2}$
b. $K s p=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{PO}^{3-}\right]^{4}$
c. $\mathrm{Ksp}=3[\mathrm{Ca}] 2\left[\mathrm{PO}_{4}{ }^{3-}\right]$
d. $K s p=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{PO}^{3-}\right]$
23. Calculate the solubility of MgCO_{3}. ($\mathrm{Ksp} \mathrm{MgCO}_{3}=6.4 \times 10^{-6}$)
a. 2.5×10^{-3}
b. 5.1×10^{-3}
c. 4.1×10^{-11}
c. would favor the reactants
d. would favor the products

Trial	Initial $[\mathrm{A}]$	Initial $[B]$	Initial Rate mol/L*min
1	0.480 M	0.190 M	0.350
2	0.480 M	0.380 M	0.350
3	0.240 M	0.190 M	0.087

d. 8.2×10^{-11}
24. Calculate the $\left[\mathrm{Ag}^{+}\right]$in a solution of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$. $\left(\mathrm{Ksp}=1.1 \times 10^{-12}\right)$
a. 2.1×10^{-6}
b. 1.0×10^{-6}
c. 6.5×10^{-5}
d. 1.3×10^{-4}

