\qquad

Semester 1 Final Review Quiz: Unit 6

1. In the reaction $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$, what is the ratio of moles of oxygen used to moles of CO_{2} produced?
a. $1: 1$
c. $2: 1$
b. 1:2
d. 2:2
2. Calculate the number of moles of $\mathrm{Al}_{2} \mathrm{O}_{3}$ that are produced when 0.60 mol of Fe is produced in the following reaction.
$\mathbf{2 A l}(\mathrm{s})+\mathbf{3 F e O}(\mathrm{s}) \rightarrow \mathbf{3 F e}(\mathrm{s})+\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
a. $0.20 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}$
b. $\quad 0.40 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}$
c. $0.60 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}$
d. $0.90 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}$
3. Which conversion factor do you use first to calculate the number of grams of CO_{2} produced by the reaction of 50.6 g of CH 44 with O_{2} ? The equation for the complete combustion of methane is:

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

a. $1 \mathrm{~mol} \mathrm{CH}_{4} / 16.0 \mathrm{~g} \mathrm{CH}_{4}$
b. $16.0 \mathrm{~g} \mathrm{CH}_{4} / 1 \mathrm{~mol} \mathrm{CO}_{2}$
c. $2 \mathrm{~mol} \mathrm{O}_{2} / 1 \mathrm{~mol} \mathrm{CO}_{2}$
d. $44.0 \mathrm{~g} \mathrm{CO}_{2} / 2 \mathrm{~mol} \mathrm{CO}_{2}$
4. Which statement is true if 12 mol CO and $12 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}$ are allowed to react?

$$
3 \mathrm{CO}(\mathrm{~g})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{CO}_{2}(\mathrm{~g})
$$

a. The limiting reagent is CO and 8.0 mol Fe will be formed.
b. The limiting reagent is CO and $3.0 \mathrm{~mol} \mathrm{CO}_{2}$ will be formed.
c. The limiting reagent is $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and 24 mol Fe will be formed.
d. The limiting reagent is $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and 36 mol CO 2 will be formed.
5. How many significant figures does 2010 have?
a. 1
b. 2
c. 3
d. 4
6. Perform the following calculation and put into the correct number of significant figures: $4.52-7.8+10.314$
a. 7
b. 7.0
c. 7.03
d. 7.034
7. What can be said about 1 mol Ag and 1 mol Au ?
a. They are equal in mass.
c. They contain the same number of atoms.
b. They have the same atomic mass.
d. Their molar masses are equal.
8. What number represents the amount of atoms in a mole of any pure substance?
a. Avogadro's number
c. Its gram-atomic number
b. Its mass number
d. Its atomic number
9. The molecular formula for vitamin C is $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}$. What is the empirical formula?
a. $\mathrm{CH}_{2} \mathrm{O}$
b. $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}$
c. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
d. CHO
10. The actual yield of a product is \qquad .
a. A negative number
c. The same as its theoretical yield
b. Independent of the reactants
d. Measured experimentally
11. Calculate the percent yield if 410.0 grams of product $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ are formed in the lab. The stoichiometry calculation predicts that 450.0 grams of product should form.

$\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$

a. 8.89%
c. 91.1%
b. 9.76%
d. not enough information
12. What is the limiting reactant if you have 4.96 mol oxygen and 1.25 mol of hydrogen?

$\mathrm{O}_{2}+$			
4.96 mol	$2 \mathrm{H}_{2}$		
1.25 mol		\quad	$2 \mathrm{H}_{2} \mathrm{O}$
:---			

a. Oxygen
c. Water
b. Hydrogen
d. Cannot be determined

