Ksp and Review

Name: _____

1. Calculate the Ksp for AIPO₄ if a saturated solution has a concentration of 9.9 x 10^{-11} . Ksp=[Al³⁺][PO₄³⁻], so then Ksp=x²

Ksp= $[Ai] [PO_4]$, so then Ksp= $(9.9 \times 10^{-11})^2$ Ksp= 9.80×10^{-21}

- 2. Calculate the [I⁻] if the Ksp of PbI_2 is 9.8 x 10⁻⁹.
 - Pbl₂ ↔ Pb²⁺ + 2l⁻ Ksp=[Pb²⁺][l⁻]², so then Ksp=4x³ because it is a 1 to 2 ratio 9.8 x10⁻⁹ = 4x³, so then divide by 4 to get x³ 2.45 x 10⁻⁹ = x³, so then to get x by itself find the cubed root 0.00135M = x, but we had 2 of the l⁻ ions we need to multiply by 2 [l-]= 2(0.00135) = 0.00270M
- 3. Write the equilibrium constant expressions for the following:
 - a. $NCl_3(g) + Cl_2(g) \leftrightarrow NCl_5(g)$ $Keq = [NCl_5]$ $[NCl_3][Cl_2]$
 - b. $4HCI (aq) + O_2 (g) \neq 2 CI_2 (g) + 2 H_2O (I)$

Keq= $[Cl_2]^2$

[HCl]⁴[Cl₂]

- 4. When a reaction reaches equilibrium, the rate of the forward reaction is <u>equal</u> the rate of the reverse reaction. (more, less, equal)
- 5. When a reaction reaches equilibrium, the amounts of the reactants and products are <u>constant</u>. (more, less, constant)
- 6. When Keq is <u>greater</u> than 1, products are favored at equilibrium.
- 7. When Keq is <u>less</u> than 1, reactants are favored at equilibrium.
- State Le Chatelier's Principle.
 When a stress is applied to a system at equilibrium, the system shifts to relieve the stress.
- 9. What are 3 types of stress that can be applied to a system at equilibrium?
 - 1. Concentration
 - 2. Temperature
 - 3. Volume/Pressure
- 10. When the following stresses are applied to the equilibrium system below, determine if the system will shift left, shift right, or have no change <u>and</u> describe if the [reactants] and [products] increase or decrease.

Heat + N₂ (g) + O₂ (g) \leftrightarrow 2 NO (g)

a. Addition of NO: shifts left, so [reactants] increase and [products] decrease

b. Removing O₂: shifts left, so [reactants] increase and [products] decrease

- c. Increasing the volume: no change because equal # moles (both sides have 2 moles)
- d. Heating the reaction: shifts right, so [reactants] decrease and [products] increase
- 11. For the following slightly soluble salts, write the dissociation equation and Ksp expression.
 - a. ZnCO₃
 - Dissociation equation: $ZnCO_3 \leftrightarrow Zn^{2+} + CO_3^{2-}$ Ksp Expression: Ksp= $[Zn^{2+}][CO_3^{2-}]$
 - b. Fe(OH)₃

Dissociation equation: $Fe(OH)_3 \leftrightarrow Fe^{3+} + 3OH^{-1}$

Ksp Expression: Ksp=[Fe³⁺][OH⁻]³