Acid-Base Review Worksheet-Accel

Name: _____ Per: ____

Complete the following. Show *all* of your work! Box or circle your answer.

Objective: Identify & describe the properties of acids and bases ٠

- 1. Compare and contrast the following:
 - a. Acid properties and base properties
 - b. Strong acid and weak acid (Include a list of strong acids)
 - c. Strong base and weak base (include a list of strong bases)
 - d. Acid-base indicator and pH meter
 - e. Monoprotic acid and polyprotic acid
 - f. Binary acid and ternary acid
- **Objective:** Identify the difference between Arrhenius' model and Bronsted-Lowry Model ٠
 - 2. Compare and contrast the following:
 - a. Arrhenius acid and Arrhenius base
 - b. Bronsted-Lowry acid and Bronsted-Lowry base
 - c. Conjugate acid and conjugate base
 - 3. Identify the acid/base pairs (use BA, BB, ca and cb):
 - a. $HC_2H_3O + H_2O \leftrightarrow H_3O^+ + C_2H_3O_2^-$
 - b. $H_2O + C_2H_3O_2 \leftrightarrow HC_2H_3O_2 + OH^2$
- **Objective:** Calculate pH and pOH ٠
 - 4. What are the hydroxide ion concentrations for solutions that have the following pH values? a. 4.0

- 5. What are the pH values for the following?
 - a. $[H^+] = 2.4 \ge 10^{-6} M$
 - b. 9.1 x 10⁻⁹ M HCl
- 6. What are the [H⁺] for the following? a. pH= 13.2
 - b. pOH = 6.7
 - c. $[OH^{-}] = 3.2 \times 10^{-6} M$
 - **d.** 1.3 x 10⁻¹² M NaOH
- 7. Calculate the pH from the following [OH⁻].a. 4.3 x 10⁻⁴ M
 - b. $3.33 \times 10^{-7} M$
- <u>Objective</u>: Calculate using the ion product constant for water
 - 8. Calculate the [OH] for the following.
 - a. $[H^+] = 1 \ge 10^{-2} M$
 - b. $2.7 \ x \ 10^{-4} \ M \ H_2 SO_4$
 - 9. What are the [H⁺] for the following?
 - a. $[OH^{-}] = 3.2 \times 10^{-6} M$
 - b. $1.3 \ge 10^{-12}$ M NaOH

• <u>Objective</u>: Write balanced equations for neutralization reactions and do the calculations required for titrations

10. Determine the concentration of 15 mL of nitric acid (HNO₃) that is titrated with 10.5 mL of 2.5 M NaOH.

11. What volume of 0.25 M acetic acid would be necessary to neutralize 50.0 mL of 2.0 M potassium hydroxide? $KOH + CH_3COOH \rightarrow KCH_3COO + H_2O$

12. 25.5 mL of 0.75 M hydrochloric acid is used to titrate 10.0 mL of calcium hydroxide. What is the concentration of the base? $2HCl + Ca(OH)_2 \rightarrow CaCl_2 + 2H_2O$

13. When titrating, what would you expect the equivalence point pH to be for the following: a. A strong acid with a strong base _____ b. A strong acid with a weak base _____ c. A weak acid with a strong base 14. Complete the following statements. a. The process used to determine the concentration of an unknown solution is called _____' b. A reaction where an acid and a base react to form salt and water is called a ______ reaction. c. A substance that can act as both an acid and a base is called a(n) ______ substance. d. A hydrogen ion and a water molecule form a _____ ion. The equilibrium (ion product) constant of water has a symbol of _____ and a value of _____. e. The _____ has values of 0-14 and tells us whether a substance is an acid or a base. f. The ______ is reached when the $[H^+]$ and $[OH^-]$ are equal. g. h. The ______ is reached when the indicator changes color during a titration.