Table of Contents		Due Date	Checked
Two Rivers that Meet Article Reading Guide	pages 1-2		
Guided Notes: Properties of Acids and Bases	Pages 3-4		
Acid- Base Properties Worksheet	Page 5		
Guided Notes: pH and pOH	Pages 6-7		
pH and pOH Practice	Page 8		
Guided Notes: Neutralization Reactions and Titration	Pages 9-10		
Titration Simulation Lab and Practice	Pages 11-13		
Titration and Neutralization Practice	Page 14		
Acid-Base Review Worksheet	Pages 15-17		

Unit 11 Test Date:

Additional Resources Available at:

- www.blendedaccelchem.weebly.com OR www.accelwarriorchem.weebly.com

Two Rivers that Refuse to Mix

Name: \qquad Period: \qquad
Look at the following video clips then read the article posted on the class website to answer the questions. $\underline{\text { https: } / / w w w . y o u t u b e . c o m / w a t c h ? v=A Q 16 N M 60 F s M ~} \quad$ https://www.youtube.com/watch?v=236fT4604Qk

Directions: As you read, complete the chart below comparing the two rivers in Brazil.

Property or characteristic	Rio Negro	Amazon	Reason for the difference (if stated in the article)
Color			
Flow rate			
Temperature			
pH			
Fish			
Animals			
along the			
banks			

Two Rivers that Refuse to Mix POST READING QUESTIONS

1. Why is the Rio Negro water dark?
2. What acid is produced by decaying organic matter along the Rio Negro?
3. Does the Rio Negro's pH of 3.5 make it acidic or basic?
4. Compare the acidity of water from the Rio Negro to water in
a. A healthy lake.
b. An acidic lake.
5. Name four ways the Rio Negro's chemistry affects plants, animals and people.
6. Name four differences between the two rivers that explain why their waters don't easily mix.
7. Besides reducing the variety and number of species of plants and animals living in the Rio Negro, what four other effects are produced by the decaying plant material?

Guided Notes: Properties of Acids and Bases
Properties of Acids:
\qquad
Acid Base Solutions:
\qquad : (solutions with $\left.\mathrm{H}_{2} \mathrm{O}\right)$ all contain $\mathrm{H}^{+}($ \qquad ions) and OH^{-} (___ ions)
acidic solutions: contain more \qquad basic solutions: contain more \qquad neutral solutions: contain \qquad (water; $\mathrm{pH}=$ \qquad
The Proton \mathbf{H}^{+}

- an H^{+}is just a \qquad
- \qquad exist in solution by itself
- will joint with a water molecule to become \qquad
- \qquad is called the hydronium ion
- \qquad and \qquad can be used interchangeably in chemical reactions

Arrhenius Acids and Bases

$$
\mathrm{HX}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})<-->\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{X}^{-}(\mathrm{aq})
$$

: substances related to each other by donating and accepting a single hydrogen ion

$$
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})<-->\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

What are the conjugate acid/base pairs?
Does NH_{3} fit the Arrhenius model of a base?
Is water an acid or a base?
: substances that can act as both an acid and a base. ex: \qquad
Practice: Identify the acid-base pairs in the following reactions.

1. $\mathrm{HBr}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})<-->\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})$
2. $\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})<-->\mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

Monoprotic and Polyprotic Acids:
For a hydrogen ion to be \qquad , it must be bonded to a highly \qquad element. (F, Cl, Br, I, O, N, S) : a substance that can only donate 1 hydrogen ion per molecule ex: $\mathrm{HBr}, \mathrm{HCl}, \mathrm{HI}, \mathrm{CH}_{3} \mathrm{COOH}$: a substance can donate more than 1 hydrogen ion per molecule ex: $\mathrm{H}_{3} \mathrm{PO}_{4}$ adn $\mathrm{H}_{2} \mathrm{SO}_{4}$
-- will ionize in steps, not all at once

Check for Understanding:

1. Identify the conjugate acid-base pairs in the reactions below.
2. Determine if the Bronsted acid is monoprotic or polyprotic, and binary or tertary.

$$
\mathrm{HSO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})<-->\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}
$$

Acid-Base Properties Worksheet

1. Compare the properties of acidic solutions and basic solutions.

Acids:

2. How do the concentrations of hydrogen ion and hydroxide ion determine whether a solution is acidic, basic, or neutral?
3. Write the formula and name for how a hydrogen ion is sometimes written in solution. Why do we use this instead of H^{+}?
4. Based on their formulas, which of the following compounds may be Arrhenius acids: $\mathrm{CH}_{4}, \mathrm{SO}_{2}, \mathrm{H}_{2} \mathrm{~S}$, $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$? Explain your reasoning.
5. Classify the following as an Arrhenius acid or an Arrhenius base:
a. $\mathrm{H}_{2} \mathrm{~S}$
c. $\mathrm{Mg}(\mathrm{OH})_{2}$
b. RbOH
d. $\mathrm{H}_{3} \mathrm{PO}_{4}$
e. $\mathrm{CH}_{3} \mathrm{COOH}$
\qquad
\qquad
\qquad
6. Identify the following as monoprotic or polyprotic and binary or ternary
a. HCl
b. $\mathrm{H}_{2} \mathrm{~S}$
c. $\mathrm{H}_{3} \mathrm{PO}_{4}$
d. HNO_{3}
e. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
7. Identify the conjugate acid-base pairs in the following reactions. You may use BA, BB, ca and cb.
a. $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \leftrightarrow \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
f. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \leftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{HPO}_{4}{ }^{2-}(\mathrm{aq})$
b. $\operatorname{HBr}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})$
g. $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \leftrightarrow \mathrm{HCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
c. $\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
h. $\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \leftrightarrow \mathrm{NO}_{3}{ }^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
d. $\mathrm{HSO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$
i. $\quad \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \leftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$
e. $\mathrm{HNO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{NO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
j. $\quad \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{HI}(\mathrm{aq}) \leftrightarrow \quad \mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq})$
8. Define the following vocabulary words:
a. Bronsted acid:
b. Bronsted base:
c. Conjugate acid:
d. Conjugate base:
e. Conjugate acid-base pairs:
f. Hydronium ion:

Guided Notes: pH and pOH

K ${ }^{w}$:

- $\mathrm{H}_{2} \mathrm{O}$ breaks down to give \qquad and \qquad
- $\mathrm{K}_{\mathrm{w}}=$ \qquad
- $\mathrm{K}_{\mathrm{w}}=$ \qquad $=$ \qquad
- So, $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$have an \qquad relationship
Practice: What is the $\left[\mathrm{OH}^{-}\right]$when $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-6}$?

$\mathrm{pH}:$

- $\mathrm{pH}=$ \qquad
- acids have a \qquad
- bases have a \qquad
- neutral has a \qquad
- Increases by a factor of \qquad between numbers on the pH scale
- pH of 3 has ten times the $[\mathrm{H}+]$ of pH 4

pOH:

- $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
- acids have a \qquad
- bases have a \qquad
- neutral has a \qquad
- increases by a factor of \qquad between numbers on the pOH scale
- pOH of 3 has ten times the $\left[\mathrm{OH}^{-}\right]$of pOH 4

pH and pOH :

pH Practice:
Calculate the pH of solutions having the following ion concentrations at 298 K .

$$
[\mathrm{H}+]=1.0 \times 10^{-2} \mathrm{M}
$$

$$
[\mathrm{OH}-]=8.6 \times 10^{-6} \mathrm{M}
$$

Which of the solutions is more acidic?

pOH Practice:

What is the pOH of a solution with a $\left[\mathrm{OH}^{-}\right]=3.75 \times 10^{-6} \mathrm{M}$?

What is the pH of a solution with a pOH of 12.5 ?

Which of the solutions is more basic?

Finding Ion Concentration:

$[\mathrm{H}+]=$ \qquad
$\left[\mathrm{OH}^{-}\right]=$ \qquad

Practice:

Calculate the $\left[\mathrm{H}^{+}\right]$and the $\left[\mathrm{OH}^{-}\right]$in a solution with a pH of 2.37 .

Calculate the $\left[\mathrm{H}^{+}\right]$of a solution with a pOH of 8.5 .

Strength of Acids and Bases:

- ___ refer to the \# of moles of acid or base dissolved in a volume of solution
-
- \qquad acids and bases \qquad ionize (also called strong electrolytes) - ex: HCl --> $\mathrm{H}++\mathrm{Cl}-$
- \qquad acids and bases have \qquad ionization (establish equilibrium)
- ex: $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ <--> $\mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$

Strong Acids: $\mathrm{HCl}, \mathrm{HI}, \mathrm{HBr}, \mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HClO}_{4}$
 Strong Bases: $\mathrm{LiOH}, \mathrm{NaOH}, \mathrm{KOH}, \mathrm{RbOH}, \mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{Sr}(\mathrm{OH}) 2, \mathrm{Ba}(\mathrm{OH})_{2}$

Any acids or bases not on this list are weak!
K ${ }^{\text {: }}$

- = the value of the equilibrium constant expression for the ___ of a \qquad acid
- \qquad acids have the \qquad K_{a} value
\mathbf{K}_{b} :
- = the value of the equilibrium constant expression for the \qquad of a \qquad base
-

Calculating the pH and pOH of Strong Acids and Bases

- For all strong \qquad , the concentration of the acid is the concentration of the \qquad .
- For all strong \qquad , the concentration of the base is the concentration of the \qquad .
Practice Calculating pH and pOH : Calculate the pH and pOH of the following solutions. 0.10 M HI
$2.4 \times 10^{-5} \mathrm{M} \mathrm{KOH}$

Measuring pH:

- \qquad : will change the color depending on the hydrogen ion concentration in solution, the color is then compared to a standard scale
give a digital readout
Check for Understanding:

1. Calculate the pH and pOH of a solution that contains:
a. $\quad\left[\mathrm{H}^{+}\right]=3.0 \times 10^{-8} \mathrm{M}$
b. $\quad 0.050 \mathrm{M} \mathrm{HNO}_{3}$
c. $\left[\mathrm{H}^{+}\right]=9.8 \times 10^{-2} \mathrm{M}$
2. What is the $\left[\mathrm{H}^{+}\right]$in a solution that has a pH of 4.75 ? $\left[\mathrm{OH}^{-}\right]$?

pH and pOH Practice

Show formula, setup and answer with units if appropriate.

1. Determine the pH of the following acid solutions:
a. $0.033 \mathrm{M} \mathrm{HNO}_{3}$
b. 0.0045 M HCl
c. 0.017 M HI
d. 0.537 M HBr
2. What is the pH of a solution if its $\left[\mathrm{H}^{+}\right]$is:
a. $4.2 \times 10^{-2} \mathrm{M}$
b. $2.6 \times 10^{-11} \mathrm{M}$
3. Calculate the $\left[\mathrm{OH}^{-}\right]$for the following acids:
a. 0.022 M HCl
b. $0.05 \mathrm{M} \mathrm{HNO}_{3}$
4. Determine the pH if the $\left[\mathrm{OH}^{-}\right]$is:
a. $2.0 \times 10^{-5} \mathrm{M}$
b. $4.5 \times 10^{-11} \mathrm{M}$
c. 0.047 M NaOH
d. 0.362 M KOH
5. Identify each as an acid, base, conjugate acid and conjugate base. You may use $\mathrm{BA}, \mathrm{BB}, \mathrm{ca}, \mathrm{cb}$.
a. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$
b. $\mathrm{H}_{2} \mathrm{O}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-} \Leftrightarrow \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-}$
6. Classify each of these as an Arrhenius acid or base:
a. $\mathrm{Ca}(\mathrm{OH})_{2}$ \qquad
c. KOH \qquad d. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$ \qquad
7. What is true about the relative concentrations of hydrogen ions [$\mathrm{H}+$] \& hydroxide ions $[\mathrm{OH}-]$ in each of these solutions:
a.Basic
b. HNO_{3} \qquad
dic \qquad c.Neutral

Guided Notes: Neutralization Reactions and Titration

Neutralization Reactions:

$\mathrm{HCl}+\mathrm{NaOH} \rightarrow$

- The general formula for a neutralization: \qquad
- Acids and bases are \qquad each other
- acids \qquad bases \qquad
- When they combine they \qquad each other - neither \qquad nor \qquad anymore

Practice: Neutralization Reactions

1. Complete and balance the neutralization reaction below, label the acid and the base in each reaction:
a. $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NaOH} \rightarrow$
b. $\mathrm{HCl}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow$
c. $\mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{NH}_{4} \mathrm{OH} \rightarrow$

Titrations:

Definition: adding a \qquad amount of solution of \qquad to a solution with a \qquad .
***GOAL : \qquad ***

Titration set-up: Label the parts the arrows are pointing

Equivalence Point:

to:
in a titration
of H^{+}and OH^{-}are equal - usually
close to the endpoint (not always at $\mathrm{pH}=7$)
 acid and \qquad base, pH around \qquad
acid and \qquad base, pH \qquad
acid and \qquad base, pH \qquad
How do we know we reached the endpoint?
a. \qquad
b. \qquad
Sketch a graph and label the equivalence point:

Titration Calculations:

After we do the experiment, how do we determine the concentration of the known??? \qquad
Steps:

1. Write and balance the equation.
2. List what you know (vol of acid, vol of base, conc of standard, mole ratio)
3. Begin with the volume (L) of the standard solution
4. Set up dimensional analysis to determine the number of moles of the unknown (Use the known molarity and the mole to mole ratio as conversion factors)
5. Divide by the volume (L) of the unknown to find molarity of the unknown

Practice:

1. 20.0 mL of 0.100 M HCl are titrated with 19.5 mL of an NaOH solution. What is the molarity of the NaOH solution?
a. Write and balance the equation. List what you know and don't know.
b. Set up dimensional analysis to find moles for the substance of unknown concentration. (NaOH)
c. Divide the number of moles of NaOH by the volume of NaOH to find molarity.
2. In a titration, 33.21 mL of 0.3020 M strontium hydroxide $\left(\mathrm{Sr}(\mathrm{OH})_{2}\right)$ solution is required to exactly neutralize 20.00 mL of hydrofluoric acid solution (HF). What is the molarity of the hydrofluoric acid solution?
a. Write and balance the equation. List what you know and don't know.
b. Set up dimensional analysis to find moles for the substance of unknown concentration. (NaOH)
c. Divide the number of moles of NaOH by the volume of NaOH to find molarity.

Check for understanding:

A 35.00 mL sample of HBr solution is titrated to an endpoint by 14.76 mL 0.4122 M NaOH solution. What is the molarity of the HBr solution? *Show all your work*

Titration Simulation Lab \& Practice

Pre-Lab: Complete the following practice problems.

1. Using titration it is found that 40.0 mL of HCl is required to neutralize 24.64 mL of 0.55 M NaOH . What is the molarity of the HCl ? (Fill in the missing numbers in the gray boxes and follow the steps).
a. Step 1: Write the known quantities below the substances in the balanced chemical equation.
```
\(\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{aq})\)
\(40.0 \mathrm{~mL} \quad 24.64 \mathrm{~mL}\)
? M \(\quad 0.55 \mathrm{M}\)
```

b. Step 2: Set up dimensional analysis to solve for moles using molarity \& the mole ratio as conversion factors.

c. Step 3: Solve for molarity, using the molarity equation.

$$
\mathrm{M}=\mathrm{mol} / \mathrm{L} \quad \mathrm{M}=\square \underline{\mathrm{mol} \mathrm{HCl}}=\square \quad \mathrm{M} \mathrm{HCl}
$$

2. What volume of 1.366 M NaOH would be required to titrate 47.2 mL of $2.075 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$? (Fill in the missing numbers in the gray boxes and follow the steps).
a. Step 1: Write the known quantities below the substances in the balanced chemical equation.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \\
& 47.2 \mathrm{~mL} \\
& 2.075 \mathrm{M}
\end{aligned} \quad 1.366 \mathrm{ML}
$$

3. 20.0 mL of HNO_{3} is titrated with 34.4 mL of $0.822 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$. What is the concentration of the HNO_{3} ? (Fill in the missing numbers in the gray boxes and follow the steps).

4. It requires 24.6 mL of $\mathrm{Ca}(\mathrm{OH})_{2}$ solution to neutralize 14.2 mL of $0.0140 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$. What is the concentration (M) of the calcium hydroxide solution? Use the problems above as a guideline. Show $\underline{A L L}$ of your work!!!

$$
\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

Directions: You will complete acid-base titrations using a computer simulation. Make sure you read the entire procedure before you begin. The steps must be done in order.
Type the following website into the browser (case-sensitive):
http://introchem.chem.okstate.edu/DCICLA/acid base.html (link is posted on the class website)

Trial 1:

1. Select "Strong Acid vs. Strong Base"
2. Fill the burette with Base.
3. Select HNO_{3} for the acid and $\underline{\mathrm{KOH}}$ as the base.

- Write the balanced equation for this reaction: \qquad

4. Select phenolphthalein as the indicator.

- What is the initial color of the solution in the flask? \qquad

5. Record the molarity and volume of the acid in the data table.
6. Slowly add base (click and hold the slider to move it up $1-2 \mathrm{~mL}$ at a time, release it to add the base) until the solution begins to turn pink.
7. When the pink color begins to stay, add the base using the dropwise button.
8. When the solution stays bubble gum pink (you should still see the magnet), stop adding base.
a. This will take PATIENCE - do not over titrate!
b. If your solution turns a bright pink (and you can't see the magnet), you must reset the titration.
9. Record the final volume of base in your data table.
10. Calculate the molarity of the base (show your work in the calculations section) and enter it into the computer.
11. Click Ok.
12. If your answer is correct, you are done! If it is incorrect, click reset and begin again.

Trial 2:

1. Select "Strong Acid vs. Strong Base"
2. Fill the burette with Base.
3. Select any Acid and any Base from the list. Write the balanced equation for the reaction below:
4. Select phenolphthalein as the indicator.
5. Continue with steps 5-12 as above.

Data Table:

	Trial 1	Trial 2
Volume of Acid		
Molarity of Acid		
Volume of Base		

Calculations: Show all of your work below for step 10!

Trial 1:

Trial 2:

Summing Up Questions:

1. At the end of the titration, is the solution acidic or basic? How do you know?
2. Explain the difference between the equivalence point and the end point of a titration.
3. Give the pH at the equivalence point for the following types of titrations:
a. Strong acid-strong base \qquad b. Strong acid-weak base ___
c. Weak acid-strong base \qquad

Practice: Solve the following problems. Show all of your work! Use the problems in the pre-lab as guidelines.

1. By titration it is found that $12.4 \mathrm{~mL}^{2}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is required to neutralize 19.8 mL of $0.0100 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$. What is the molarity of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaSO}_{4}+2 \mathrm{H}_{2}$
2. What is the molarity of phosphoric acid if 15.0 mL of the solution is neutralized by 38.5 mL of 0.15 M NaOH ?

$$
3 \mathrm{NaOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O}
$$

3. Find the volume of 0.80 M KOH needed to neutralize 15.0 mL of $0.65 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$.

$$
2 \mathrm{KOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{HOH}
$$

4. What volume of $0.12 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ is needed to neutralize 12.2 mL of 0.25 M HCl ?

$$
\mathrm{Ba}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{BaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

5. List the steps for setting up a titration experiment:
6. Define the following terms:
a. neutralization reaction
e. equivalence point
b. titration
f. end point
c. titration standard
g. acid-base indicator
d. buret

DIRECTIONS: Write the complete neutralization reaction and solve for the molarity or volume.

1. 10.0 mL of 1.00 M HCl neutralized 20.0 mL of a NaOH solution. What was the molarity of the NaOH ? reaction: \qquad
2. $\quad 12.0 \mathrm{~mL}$ of 0.500 M NaOH neutralized 6.0 mL of HCl solution. What was the molarity of the HCl ? reaction: \qquad
3. Two solutions were titrated to the endpoint. 18.5 mL of 2.0 M HCl and 21.2 mL of NaOH solution were used. What was the molarity of NaOH ?
reaction: \qquad
4. In a titration experiment, HCl and LiOH solutions were used. The initial volume of HCl was 1.25 mL and LiOH was 2.65 mL . The final volume of HCl was 13.60 mL and LiOH was 11.20 mL . If the LiOH was 0.140 M what was the molarity of HCl ? reaction: \qquad
5. If the same volumes were used from question 4 , but the HCl was 0.140 M , what would the molarity of LiOH be? reaction: \qquad

Acid-Base Review Worksheet-Accel

Complete the following. Show all of your work! Box or circle your answer.

- Objective: Identify \& describe the properties of acids and bases

1. Compare and contrast the following:
a. Acid properties and base properties
b. Strong acid and weak acid (Include a list of strong acids)
c. Strong base and weak base (include a list of strong bases)
d. Acid-base indicator and pH meter
e. Monoprotic acid and polyprotic acid
f. Binary acid and ternary acid

- Objective: Identify the difference between Arrhenius' model and Bronsted-Lowry Model 2. Compare and contrast the following:
a. Arrhenius acid and Arrhenius base
b. Bronsted-Lowry acid and Bronsted-Lowry base
c. Conjugate acid and conjugate base

3. Identify the acid/base pairs (use $\mathrm{BA}, \mathrm{BB}, \mathrm{ca}$ and cb):
a. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$
b. $\mathrm{H}_{2} \mathrm{O}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \leftrightarrow \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-}$

- Objective: Calculate pH and pOH

4. What are the hydroxide ion concentrations for solutions that have the following pH values?
a. 4.0
b. 8.0
5. What are the pH values for the following?
a. $\left[\mathrm{H}^{+}\right]=2.4 \times 10^{-6} \mathrm{M}$
b. $9.1 \times 10^{-9} \mathrm{M} \mathrm{HCl}$
6. What are the $\left[\mathrm{H}^{+}\right]$for the following?
a. $\mathrm{pH}=13.2$
b. $\mathrm{pOH}=6.7$
c. $[\mathrm{OH}]=3.2 \times 10^{-6} \mathrm{M}$
d. $1.3 \times 10^{-12} \mathrm{M} \mathrm{NaOH}$
7. Calculate the pH from the following $[\mathrm{OH}]$.
a. $4.3 \times 10^{-4} \mathrm{M}$
b. $3.33 \times 10^{-7} \mathrm{M}$

- Objective: Calculate using the ion product constant for water 8. Calculate the [OH] for the following.
a. $\left[\mathrm{H}^{+}\right]=1 \times 10^{-2} \mathrm{M}$
b. $2.7 \times 10^{-4} \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$

9. What are the $\left[\mathrm{H}^{+}\right]$for the following?
a. $[\mathrm{OH}]=2.3 \times 10^{-6} \mathrm{M}$
b. $3.1 \times 10^{-12} \mathrm{M} \mathrm{NaOH}$

- Objective: Write balanced equations for neutralization reactions and do the calculations required for titrations

10. Determine the concentration of 15 mL of nitric acid $\left(\mathrm{HNO}_{3}\right)$ that is titrated with 10.5 mL of 2.5 M NaOH .
11. What volume of 0.25 M acetic acid would be necessary to neutralize 50.0 mL of 2.0 M potassium hydroxide?

$$
\mathrm{KOH}+\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{KCH}_{3} \mathrm{COO}+\mathrm{H}_{2} \mathrm{O}
$$

12. 25.5 mL of 0.75 M hydrochloric acid is used to titrate 10.0 mL of calcium hydroxide. What is the concentration of the base? $\quad 2 \mathbf{H C l}+\mathbf{C a}(\mathbf{O H})_{2} \rightarrow \mathbf{C a C l}_{2}+2 \mathbf{H}_{2} \mathbf{O}$
13. When titrating, what would you expect the equivalence point pH to be for the following:
a. A strong acid with a strong base
b. A strong acid with a weak base
c. A weak acid with a strong base
14. Complete the following statements.
a. The process used to determine the concentration of an unknown solution is called
\qquad
b. A reaction where an acid and a base react to form salt and water is called a \qquad reaction.
c. A substance that can act as both an acid and a base is called $\mathrm{a}(\mathrm{n})$ \qquad substance.
d. A hydrogen ion and a water molecule form a \qquad ion.
e. The equilibrium (ion product) constant of water has a symbol of \qquad and a value of
\qquad
f. The \qquad has values of 0-14 and tells us whether a substance is an acid or a base.
g. The \qquad is reached when the $\left[\mathrm{H}^{+}\right]$and $[\mathrm{OH}]$ are equal.
h. The \qquad is reached when the indicator changes color during a titration.
