Name:	Period:

Table of Contents		Due Date	Checked
Reaction Kinetics and Collision Theory Notes	pages 1-2		
Kinetics (Reaction Rate) Practice	pages 3-4		
Rate Law Notes	pages 5-6		
Rate Law Practice	pages 7-8		
More Rate Law Practice	pages 9-10		
Keq Notes	pages 11-12		
Keq Practice	pages 13-14		
Le Chatelier's Principle Notes	pages 15-16		
Ksp Notes	pages 17-18		
Ksp Practice	page 19		
Unit 10 Review Worksheet	Pages 20-21		

Unit 10 Test Date: _____

- All homework is due the day of the unit test.
- All quizzes and quiz retakes are due the day of the unit test.
- All labs are due the day of the unit test.

Additional Resources Available at:

• www.blendedaccelchem.weebly.com OR www.accelwarriorchem.weebly.com

Guided Notes: Reaction Kinetics and Collision Theory

Expressing	Reaction	Rates
LVDI C221118	Neaction	nates

	Some chemical reactions are	and others are	, but chemists need to be	e more
•	What is a rate?			
•	How do we use rates in everyday life?			
•	How would we measure the rate of a rea	action?		
•	Equation for rate			
	Reaction:			
•	What happens to the amount of reactan What happens to the amount of product			
•	Do you think you would observe the sam			
•	Do you trillik you would observe the sair	ie changes in reactants and products it	or every reactions. Explain.	
Reacti	on Rate			
•	Reaction rate for chemistry is defined as	:		_
•	Concentration:			-
	o solute:			
	o solvent:			
		, water is the		
		tion in chemistry:		
•	Reaction rates are determined	by measuring the	e	of the
	reactants and/or products in a	·		
•	Reaction rates CANNOT by calculated from	om a	·	
	Reaction rates must always be			
•	reaction rates must always be	·		
• Collisio	on Theory	·		
• Collisio		·		
• Collisio	on Theory In order for a reaction to occur:			
• Collisio	on Theory In order for a reaction to occur: o reactants must			
• Collisio •	on Theory In order for a reaction to occur: o reactants must c collisions must be in the			
Collisio	on Theory In order for a reaction to occur: o reactants must c collisions must be in the		for bonds to break	and
Collisio	on Theory In order for a reaction to occur: o reactants must collisions must be in the collisions must have a Activated Complex: a temporary, unstab	ole arrangement of atoms in which	for bonds to break	and
Collision	on Theory In order for a reaction to occur: o reactants must collisions must be in the collisions must have a Activated Complex: a temporary, unstab	ole arrangement of atoms in which ther name for activated complex.	for bonds to break	and

How would a high vs. a low activation energy affect the speed of a reaction?

Reaction #1:
Reaction #2:
Which graph is exothermic? How do you know?
Which graph is endothermic? How do you know?
Which graph has a higher activation energy?
Which reaction in the graphs will be faster? Explain.

o substance that ______ the rate of reaction ______.

o creates a lower _____

0

Sketch:

Kinetics (Reaction Rate) Practice

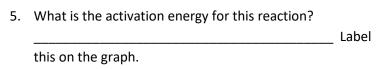
1. Complete the following concept map using the following terms:

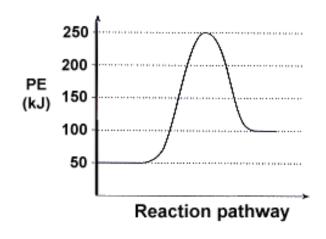
Surface area *Temperature* Concentration Collision theory Reaction rates Reactivity 1 Explained by 7 Influenced 2 bγ 6 3 4 5

- 2. Define reaction rate. What does the reaction rate indicate about a particular chemical reaction?
- 3. In addition to colliding, what else must happen in order for a reaction to occur?
- 4. Use the collision theory to discuss how the following factors affect the rate of a chemical reaction:
 - a. Temperature
 - b. Concentration
 - c. Surface area
- 5. What role does the reactivity of the reactants play in determining the rate of a chemical reaction?
- 6. Answer the following questions about catalysts:
 - a. What is the difference between a homogeneous and a heterogeneous catalyst?
 - b. How does a catalyst affect the activation energy for a chemical reaction?
 - c. What is the result of adding a catalyst to a reaction?
- 7. Would the changes listed below increase or decrease the rate of the following reaction:

$$I_2(s) + CI_2(g) \rightarrow 2ICI(g)$$

- a. decreasing temperature _____
- c. crushing l_2

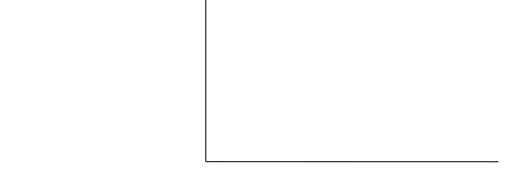

Catalyst


- b. Increasing [Cl₂]
- d. adding a catalyst _____

Activation Energy Diagrams

Use the graph below to answer questions 1-7: Include labels on any numerical values.

- 1. Label the position of the *reactants* on the graph.
- 2. Label the position of the *products* on the graph.
- 3. Lable the position of the *activated complex* on the graph.
- 4. How much energy do the reactants have at the start of the reaction?



- 6. How much energy do the products have at the end of the reaction?
- 7. Is this reaction exothermic or endothermic? Explain your answer using evidence from the graph.
- 8. Draw an energy diagram on the axes below using the given information. Be sure to include labels and units on both the x-axis and y-axis.

Potential energy of reactants = 350 kJ/mole

Activation energy = 100 kJ/mole

Potential energy of products = 250 kJ/mole

- 9. Is this reaction exothermic or endothermic? Explain your answer using evidence from the graph.
- 10. You add a catalyst to the reaction you graphed in question 8, which lowers the activation energy of the reaction from 100 kJ/mole to 50 kJ/mole. Draw the energy diagram of the catalyzed reaction on the same set of axes above (use a dashed line or a different color and label the reaction with the catalyst).

Guided Notes: Rate Laws

Review: Molarity

- measures the ______
- solute is measured in ______
- solution is measured in _____
- abbreviated with a capital _____

Practice:

1. What is the molarity of a solution that has 10 grams of sodium sulfate in 100 mL of solution?

Rate Laws:

increased concentration of a _____ usually _____ the rate of a reaction
 however, _____ concentration might actually have little effect on the rate of _____

Rate Order and Rate Laws:

- For the reaction A + B → C + D
- General form of Rate Law:

rate =
$$k[A]^x[B]^y$$

- rate laws are found _______
 - o change the concentration of ______ at a time to see how the rates are affected
- Rate units: M/s (change in molarity per second)

Rate Law Example #1:

Reaction: A + B \rightarrow C

Trial	[A]	[B]	Rate (M/sec)
1	1.0	2.0	0.50
2	2.0	2.0	1.00
3	2.0	6.0	3.00

1. What happens to

the rate when [A] doubles?

- 2. What is the rate order of reactant A?
- 3. What happens to the rate when B triples?
- 4. What is the rate order of reactant B?
- 5. What is the rate law for this reaction?

Rate Law Example #2:

Reaction: A \rightarrow B + C

Trial	[A]	Rate (M/sec)
1	2.5	1.00
2	5.0	4.00
3	7.5	16.00

- 1. What happens to the rate when [A] doubles?
- 2. What is the rate order of reactant A?
- 3. What is the rate law for this reaction?

Rate Law Example #3:

Reaction: $A + B \rightarrow C$

Trial	[A]	[B]	Rate (M/sec)
1	2.0	4.0	3.0
2	6.0	2.0	1.5
3	6.0	4.0	3.0

- 1. What happens to the rate when [A] triples?
- 2. What is the rate order of reactant A?
- 3. What happens to the rate when [B] doubles?
- 4. What is the rate order of reactant B?
- 5. What is the rate law for this reaction?

Rate Laws Practice

General form of a rate law is **rate** = $k[A]^x[B]^y$ for a reaction with two reactants

1. Use the data table below to answer questions about the reaction $A_2 + B_2 \rightarrow 2 AB$

Trial	[A ₂]	[B ₂]	Rate (M/s)
1	0.01	0.05	0.01
2	0.01	0.10	0.02
3	0.02	0.10	0.04

- a. What trials do you use to determine the effect of $[A_2]$ on the reaction rate?
- b. What is the rate order (the exponent) with respect to [A2]?
- c. What trials do you use to determine the effect of [B₂] on the reaction rate?
- d. What is the rate order (the exponent) with respect to [B₂]?
- e. What is the rate law for this reaction?

2. Use the data table below to answer questions about the reaction $C + D \rightarrow E$

Trial	[C]	[D]	Rate (M/s)
1	0.1	0.01	0.02
2	0.1	0.02	0.04
3	0.2	0.02	0.16

- a. What trials do you use to determine the effect of [C] on the reaction rate?
- b. What is the rate order (the exponent) with respect to [C]?
- c. What trials do you use to determine the effect of [D] on the reaction rate?
- d. What is the rate order (the exponent) with respect to [D]?
- e. What is the rate law for this reaction?

3. Use the data table below to answer questions about the reaction $C + D \rightarrow E$

Trial	[C]	[D]	Rate (M/s)
1	0.1	0.01	0.02
2	0.1	0.02	0.08
3	0.1	0.03	0.18
4	0.1	0.04	0.32
5	0.2	0.04	1.28
6	0.3	0.04	2.88

- a. What trials do you use to determine the effect of [C] on the reaction rate?
- b. What is the rate order (the exponent) with respect to [C]?
- c. What trials do you use to determine the effect of [D] on the reaction rate?
- d. What is the rate order (the exponent) with respect to [D]?
- e. What is the rate law for this reaction?

4. Use the data table below to answer questions about the reaction $F + G \rightarrow H$

Trial	[F]	[G]	Rate (M/s)
1	0.01	0.4	0.02
2	0.02	0.4	0.16
3	0.03	0.4	0.54
4	0.1	0.2	5
5	0.1	0.4	20
6	0.1	0.6	45

- a. What trials do you use to determine the effect of [F] on the reaction rate?
- b. What is the rate order (the exponent) with respect to [F]?
- c. What trials do you use to determine the effect of [G] on the reaction rate?
- d. What is the rate order (the exponent) with respect to [G]?
- e. What is the rate law for this reaction?

Reaction Order and Rate Law Expression Worksheet #2

1. Reaction: $C + D \rightarrow E$

Exp#	[C]	[D]	Rate
			(mole dm ⁻³ s ⁻¹)
1	0.1	0.01	0.02
2	0.1	0.02	0.04
3	0.1	0.03	0.06
4	0.1	0.04	0.08
5	0.2	0.04	0.08
6	0.3	0.04	0.08

- a. What is the rate order of reactant C?
- b. What is the rate order of reactant D?
- c. What is the rate law for the reaction?
- 2. Reaction: $F + G \rightarrow H$

Ехр#	[F]	[G]	Rate
			(mole dm ⁻³ s ⁻¹)
1	0.01	0.4	0.02
2	0.02	0.4	0.04
3	0.03	0.4	0.06
4	0.1	0.2	5
5	0.1	0.4	10
6	0.1	0.6	15

- a. What is the rate order of reactant F?
- b. What is the rate order of reactant G?
- c. What is the rate law for the reaction?
- 3. Reaction: $C + D \rightarrow E$
 - a. What is the rate order of reactant C?
 - b. What is the rate order of reactant D?
 - c. What is the rate law for the reaction?

Ехр#	[C]	[D]	Rate
			(mole dm ⁻³ s ⁻¹)
1	0.1	0.01	0.02
2	0.1	0.02	0.08
3	0.1	0.03	0.18
4	0.1	0.04	0.32
5	0.2	0.04	1.28
6	0.3	0.04	2.88

4. Reaction: $F + G \rightarrow H$

Exp#	[F]	[G]	Rate
			(mole dm ⁻³
			s ⁻¹)
1	0.01	0.4	0.02
2	0.02	0.4	0.16
3	0.03	0.4	0.54
4	0.1	0.2	5
5	0.1	0.4	20
6	0.1	0.6	45

- a. What is the rate order of reactant F?
- b. What is the rate order of reactant G?
- c. What is the rate law for the reaction?
- 5. Reaction: $A_2 + B_2 \rightarrow 2 AB$

Ехр#	[A ₂]	[B ₂]	Rate
			(mole dm ⁻³ s ⁻¹)
1	0.001	0.001	0.01
2	0.001	0.002	0.02
3	0.001	0.003	0.03
4	0.001	0.004	0.04
5	0.002	0.004	0.16
6	0.003	0.004	0.36

- a. What is the rate order of reactant A_2 ?
- b. What is the rate order of reactant B_2 ?
- c. What is the rate law for the reaction?

Guided Notes: Keq

2	Types	οf	Reactions:	

1. Completion Reactions:			
a. Results in a complete	of	to	
i. Example:			
b. 2 indicators of a completion reacc. most reactions go		or formation of a	
d. have asided			
2. Reversible Reactions:	•		
a. Can occur in both the	and directions		
b. Example:			
i. equations have a	sided arrow		
c. forward arrow indicates			
i.			
d. reverse arrow indicates			
i.			
e. both reactions will			
Chemical Equilibrium:			
A state in which the	and	reactions take place at	rates.
	==		
The amount of the	and	are	at equilibrium
• Equilibrium is react	ions are still occurring, even th	nough we may not be able to see i	t
 Sketch the graph below as 	nd describe what is being show	vn about the concentrations of the	e substances.
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.1		
What happens to the forward rate	e as it approaches equilibrium?	?	
What happens to the reverse rate	as it approaches equilibrium?		
What is true about the forward are	nd the reverse rate at equilibri	um?	
The Law of Chemical Equilibrium:			
At a given	, a chemical system may read	ch a state in which a particular	of
and	concentrations has a	a constant value.	
 General example reaction: 			
 What do the lower case le 	etters represent?		
 What do the capital letter 	rs represent?		
Write the general equilibrium const.	ant expression:		
	1		
o []=			

	•	Keq:							
		0							
		0							
		0							
		0							
	•	If Keq >	1						
		0							
		0							
	•	if Keq <	: 1						
		0							
		0							
		0	Which is be	tter for busines	s?				
2	Ty	oes of Eq	լսilibrium։						
	1.	Homog	enous equili	orium:					
	2.	Hetero	geneous equ	ilibrium:					
		a.	if any of the	substances in t	he reactions are		or	, leave them out of	f Keq
		b.	only use		and		solutions in t	he expression for Keq	
Ex	amp	le 1: Wri	te the equili	orium expressio	n for the following e	equation:			
		N ₂ O _{4 (g)}	\leftrightarrow 2NO _{2 (g)}						
		Keq =							
		_							
Ex	amp		-	-	n for the following e	equation:			
		C (s) + H	$_{2}O_{(g)} \leftrightarrow CO_{(g)}$	g) + H _{2 (g)}					
		Keq =							
			culate Keq fo s favored?	r the reaction b	elow when [SO ₃]=0.0	0160M, [SO ₂]	=0.00560M, a	nd [O₂]=0.0210M. Are	the products
		2SO _{3(g)} •	\leftrightarrow 2SO _{2(g)} + C) _{2(g)}					

<u>Check for Understanding</u>: Determine the value of Keq at 400K for the decomposition of phosphorous pentachloride if:

 $[PCl_5] = 0.135M$, $[PCl_3] = 0.550M$, and $[Cl_2] = 0.550$ M.

 $PCI_5(g) \leftrightarrow PCI_{3(g)} + CI_{2(g)}$

Equilibrium Constant (Keq) - Chemistry

1. Write the equilibrium constant (K_{eq}) expressions for the following homogeneous equilibria.

a.
$$C_2H_4O(g) \leftrightarrow CH_4(g) + CO(g)$$

d.
$$4NH_3(g) + 3O_2(g) \leftrightarrow 2N_2(g) + 6H_2O(g)$$

b.
$$3O_2(g) \leftrightarrow 2O_3(g)$$

e.
$$4HCl(g) + O_2(g) \leftrightarrow 2Cl_2(g) + 2H_2O(g)$$

c.
$$2N_2O(g) + O_2(g) \leftrightarrow 4NO(g)$$

f.
$$PCl_5(g) \leftrightarrow PCl_3(g) + Cl_2(g)$$

2. Write the equilibrium constant (K_{eq}) expressions for the following heterogeneous equilibria.

a.
$$C_4H_{10}$$
 (1) \leftrightarrow C_4H_{10} (g)

c.
$$CO(g) + Fe_3O_4(s) \leftrightarrow CO_2(g) + 3FeO(s)$$

b.
$$NH_4HS$$
 (s) $\leftrightarrow NH_3$ (g) + H_2S (g)

d.
$$(NH_4)_2CO_3(s) \leftrightarrow 2NH_3(g) + CO_2(g) + H_2O(g)$$

For the following problems, show $\underline{\it all}$ of your work including set-up (with K_{eq} expression) and answer with units if needed.

3. At 773 K, the reaction **2NO (g)** + O_2 (g) \leftrightarrow **2NO₂ (g)** produces the following concentrations: [NO] = 3.49x10⁻⁴ M; [O₂] = 0.80 M; [NO₂] = 0.25 M. Calculate the equilibrium constant (K_{eq}) for this reaction.

4. The chemical equation for the decomposition of formamide is: $HCONH_2$ (g) $\leftrightarrow NH_3$ (g) + CO (g) Calculate K_{eq} using the following equilibrium data: $[HCONH_2] = 0.0637 \text{ M}$, $[NH_3] = 0.518 \text{ M}$ and [CO] = 0.518 M.

- 5. Calculate K_{eq} for the reaction for iron and water if the equilibrium concentrations are as follows: $[H_2O] = 1.00 \text{ M} \& [H_2] = 4.50 \text{ M}$. **2Fe (s)** + $3H_2O$ (g) \leftrightarrow **Fe**₂ O_3 (s) + $3H_2$ (g)
- 6. At 793 K, the equilibrium constant for the reaction $NCl_3(g) + Cl_2(g) \leftrightarrow NCl_5(g)$ is 39.3.
 - a. Do the products or the reactants dominate in this equilibrium? Explain your answer in complete sentences.
 - b. If the equilibrium constant for this reaction were less than 1, would the reactants or products be dominant? Explain your answer in complete sentences.
- 7. The equilibrium constant is 9.36 for the following reaction: $A(g) + 3B(g) \leftrightarrow 2C(g)$. The table below provides concentration data for two different reaction mixtures of these gases.

	A (mol/L)	B (mol/L)	C (mol/L)
Mixture 1	0.716	0.208	0.425
Mixture 2	0.562	0.491	0.789

- a. Calculate the K_{eq} for each mixture. Use the back of the sheet to show your work.
- b. Are both reactions at equilibrium? Explain your answer in complete sentences.

Guided Notes: Le'Chatelier's Principle

Background Knowledge:

- 1. What happens if you are running on a treadmill and someone increases the speed?
- 2. What happens if you are riding your bike and the wind picks up?

These are	being put on you.
Chemists put	on chemical reactions.
Why do chemists want	o put stresses on chemical reactions?
Chemists put stresse	on chemical reactions to produce more
	chemists use this.
Le'Chatelier's Principle	If a is applied to a system at

Changes in Concentration:

Adding Reactants

1. What will happen to the balance if you add more reactants?

system shifts in the direction that relieves the ______.

2. What happens if I add more CO?

$$CO(g) + 3H_2(g) \leftrightarrow CH_4 + H_2O$$

3. The reaction will shift to the ______.

Removing Products

1. What will happen to the balance if you remove products?

2. What happens if I remove H₂O?

$$CO(g) + 3H_2(g) \leftrightarrow CH_4 + H_2O$$

3. The reaction will shift to the ______.

Adding Products

1. What will happen to the balance if you add products?

2. What happens if I add H₂O?

$$CO(g) + 3H_2(g) \leftrightarrow CH_4 + H_2O$$

3. The reaction will shift to the ______.

Changes in Volume and Pressure:

Decreasing the Volume

1.	What hap	pens to the pressure when volu	ıme is decreasing?	
2.	What happ	ens to the number of collisions	5?	
3.	To determ	ine if the reaction will shift, we	need to look at the number of	of the reactants and
	products.			
		$CO(g) + 3H_2(g) \leftrightarrow CH_4$	+ H₂O	
4.	Which side	e of the reaction contains more	e moles?	
5.	Volume on	lly has an effect on the reactior	if the	of reactants
	differs fror	n the number of products.		
6.	This reaction	on has more moles of	, so the reactio	n will shift to the
Chang	<u>es in Tempei</u>	<u>rature</u>		
1.	Alters bot	h the	and the	
2.			or	
3.	Is this an e	xothermic or an endothermic r	eaction?	
4.	Is heat con	sidered a product or reactant i	n the reaction below?	
		$CO(g) + 3H_2(g) \leftrightarrow CH_4$	+ H ₂ O + heat	
5.	In this rea	action, adding more heat wo	uld shift the reaction to the	.
Additi	on of a Cate	<u>alyst</u>		
1.		up a read	ction, but does so in both ways.	
2.			eached	
		•		
Summ	arv: Le'Ch a	ntelier's Principle: Changes i	n,	, and
	,	make a d	ifference in the amount of product for	med in a reaction.
			merende in the amount or product to	
Practic	:e:			
	For the rea	action below, which change will	cause the reaction to shift to the right?	
		$CH_4(g) + 2H_2S(g) + heat < -$	> CS ₂ (g) + 4H ₂ (g)	
	a.	decrease the concentration o	f dihydrogen sulfide	
	b.	increase the pressure on the	system	
	C.	increase the temperature on	the system	
	d.	increase the concentration of	carbon disulfide	
	e.	decrease the concentration of	methane	

Guided Notes: Ksp

$\underline{\textbf{Solubility Product Constant} - \textbf{K}_{sp}}$

• K _{sp} :
 General Equation:
 Since the reactant is ALWAYS a, K_{sp} =
Practice - K _{sp}
1. Write the K_{sp} expression for the solvation of Ag_2SO_4 .
First, determine the ions that will be formed:
Put the ions in the K_{sp} expression (must include charges!):
Use the coefficients to determine how many moles of each ion will be formed. Put those numbers in for b $\&$ c (as exponents):
(if the exponent is, it is not used in the expression)
2. Write the K _{sp} expression for the solvation of magnesium hydroxide. Formula:
3. Write the Ksp expression for the solvation of calcium phosphate. Formula:
5. This are top expression or the softwaren or earliern prospriater formation

4. Calculate the solubility for AgCl at 298K. (Ksp= 1.8×10^{-10}).
a. Write the Ksp expression for the solvation of AgCl.
b. Simply the expression.
c. Fill in your Ksp value and solve.
5. Calculate the solubility for CaCO ₃ at 298K. (Ksp=3.4 x 10 ⁻⁹).
6. Calculate the Ksp for PbCl ₂ with a solubility of 5.0 x 10 ⁻³ mol/L.
a. Write the Ksp expression for the solvation of PbCl ₂ .
b. Simplify the expression.
c. Fill in your "x" (molar concentration) and solve.
7. Calculate the Ksp for BaCrO ₄ with a solubility of 1.5 x 10^{-5} mol/L.
, , , , , , , , , , , , , , , , , , , ,

Ksp Practice Problems

Use your notes or read the portion of "Using solubility product constants" (pg.614-617). Pay attention to any and all examples!

- 1. What is the solubility product constant and when is it used?
- 2. How can you calculate ion concentration using the solubility product constant?
- 3. Write the Ksp expression for the following compounds:
 - a. PbF_2
 - b. $Zn(OH)_2$
 - c. MgCO₃
- 4. Use the Ksp values from the table to calculate the following: (Show all of your work)
 - a. The solubility in mol/L of PbCrO₄.
 - b. The solubility in mol/L of Ag₂SO₄.
 - c. [F-] in a saturated solution of CaF₂ at equilibrium.

Compound	Ksp at 298 K
PbCrO ₄	2.3 x 10 ⁻¹³
Ag ₂ SO ₄	1.2 x 10 ⁻⁵
CaF ₂	3.5 x 10 ⁻¹¹

Unit 10 Review - Accelerated Chemistry

- 1. What is a reaction rate and what units are used with reaction rates?
- 2. What is the collision theory?
- 3. List the factors that affect the rate of a reaction. Explain how each factor affects the rate.

A

В

C D

E

4. Draw a reaction diagram for an exothermic reaction and label the following: reactants, products, activation energy, activated complex.

- 5. For the reaction 3 ClO $^-$ (aq) \rightarrow ClO $_3$ $^-$ (aq) + 2 Cl $^-$ (aq) doubling the concentration of ClO $^-$ quadruples the initial rate of formation of ClO $_3$ $^-$. What is the rate expression for the reaction?
- 6. The reaction $C_6H_5N_2CI$ (aq) + H_2O (I) \rightarrow C_6H_5OH (aq) + N_2 (g) + HCI (aq) is first order in [$C_6H_5N_2CI$] and zero order in [H_2O]. What is the rate expression?
- 7. For the reaction A + B \rightarrow AB , the following data was obtained:
 - a. Write the rate expression for the reaction.
- 8. What 2 factors will drive a reaction to completion?

a) _____

b) _____

- 9. Describe a reversible reaction. Give an example.
- 10. Describe dynamic equilibrium. Give an example.

Trial	Initial [A]	Initial [B]	Initial Rate mol/L*min
1	0.480 M	0.190 M	0.350
2	0.480 M	0.380 M	0.350
3	0.240 M	0.190 M	0.087

10	rate.
12.	State Le Chatelier's Principle.
13.	What are the 3 possible stresses we can apply to a system at equilibrium?
a) .	b) c)
14.	Use the reaction $(2SO_{2(g)} + O_{2(g)} \leftarrow \Rightarrow 2SO_{3(g)} + \text{heat})$ to determine what will happen (shift left/right, no change) if the following stresses are applied:
a.	SO_2 is added b. Volume is increased c. Heat is added
15.	What is the general formula for the equilibrium constant, $K_{\rm eq}$?
16.	What does the value of K_{eq} tell a chemist about a reaction if If the value of K_{eq} is greater than 1
	If the value of K_{eq} is less than 1
	Write the equilibrium constants for these reversible reactions – ALL CHEMICALS ARE GASES: $A + B \leftrightarrow C + 3D$ b. NO + O ₂ \leftrightarrow NO ₃ c. CO ₂ + H ₂ \leftrightarrow CO + H ₂ O
18.	Calculate K_{eq} for reaction 17a if the equilibrium concentrations are: [A]=0.100M, [B]=0.230M, [C]=1.17M, & [D]=2.19M.
19.	The equilibrium constant in $\bf 17b$ is .025. If [NO] = .36 M and [O ₂] = .21 M, what is the equilibrium concentration of NO ₃ ?
20.	If K_{eq} in 17c is 6.37 x 10 ⁻³ , [CO ₂] = 0.037M, [H ₂] = 0.28M, and [CO] = 0.084M, calculate [H ₂ O].
21.	Describe K_{sp} .
22.	What is the generic formula for $K_{\rm sp}$?
23.	Write the expression for K_{sp} for the following sparingly soluble salts: $Ca_{3}(PO_{4})_{2}$
24. (Calculate the Ksp of $CaSO_4$ if a saturated solution has a concentration of 1.58 x 10^{-4} .
25. T	The solubility product constant of BaCO ₃ is 2.6×10^{-9} . Calculate the solubility (in mol/L) of BaCO ₃ .
26. 7	The solubility product constant of Ag ₂ CrO ₄ is 1.1×10^{-12} . Calculate the [Ag+] in a solution of Ag ₂ CrO ₄ at equilibrium.

Date:	
Poto	
Date:	
Date:	
Date:	
Pata	
Date:	

	Date:
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
ŀ	
I	Date:
I	
I	
I	
I	
I	
I	
I	
١	
I	
I	
I	
ŀ	
I	Date:
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
ŀ	
I	Date:
I	
I	
I	
I	
I	
I	
ŀ	
	Date:
I	
١	
ı	
I	

Date:	
Date:	
Date:	
Date.	
Date:	
Date:	
Date:	

Date:	
Date:	
Date:	
Date.	
Date:	
Date:	
Date:	