\qquad

Table of Contents		Due Date	Checked
Reaction Kinetics and Collision Theory Notes	pages 1-2		
Kinetics (Reaction Rate) Practice	pages 3-4		
Rate Law Notes	pages 5-6		
Rate Law Practice	pages 7-8		
More Rate Law Practice	pages 9-10		
Keq Notes	pages 11-12		
Keq Practice	pages 13-14		
Le Chatelier's Principle Notes	pages 15-16		
Ksp Notes	pages 17-18		
Ksp Practice	page 19		
Unit 10 Review Worksheet	Pages 20-21		

Unit 10 Test Date:

- All homework is due the day of the unit test.
- All quizzes and quiz retakes are due the day of the unit test.
- All labs are due the day of the unit test.

Additional Resources Available at:

- www.blendedaccelchem.weebly.com OR www.accelwarriorchem.weebly.com

Guided Notes: Reaction Kinetics and Collision Theory

Expressing Reaction Rates

- Some chemical reactions are \qquad and others are \qquad , but chemists need to be more
- What is a rate?
- How do we use rates in everyday life?
- How would we measure the rate of a reaction?
- Equation for rate

- What happens to the amount of reactants over time? \qquad
- What happens to the amount of products over time? \qquad
- Do you think you would observe the same changes in reactants and products for every reaction? Explain.

Reaction Rate

- Reaction rate for chemistry is defined as: \qquad
- Concentration: \qquad
- solute: \qquad
- solvent: \qquad
- ex: salt in water, salt is the \qquad , water is the \qquad
- unit typically used for concentration in chemistry: \qquad ,which means: \qquad
- Reaction rates are determined \qquad by measuring the \qquad of the reactants and/or products in a \qquad .
- Reaction rates CANNOT by calculated from a \qquad .
- Reaction rates must always be \qquad .

Collision Theory

- In order for a reaction to occur:
- reactants must \qquad
- collisions must be in the \qquad
- collisions must have a \qquad for bonds to break
- Activated Complex: a temporary, unstable arrangement of atoms in which \qquad and
\qquad
- \qquad is another name for activated complex.
- Collisions with the correct orientation must also have a sufficient amount of \qquad .
- This amount of energy is called the \qquad .
- Symbol: \qquad
- How would a high vs. a low activation energy affect the speed of a reaction?
- Reaction \#1:
- Reaction \#2:
- Which graph is exothermic? \qquad How do you know?
- Which graph is endothermic? \qquad How do you know?
- Which graph has a higher activation energy? \qquad
- Which reaction in the graphs will be faster? Explain.

Factor Affecting Reaction Rate:

-
- \qquad
- \qquad
- \qquad
- \qquad
- substance that \qquad the rate of reaction \qquad .
creates a lower \qquad
\circ
Sketch:

Kinetics (Reaction Rate) Practice

1. Complete the following concept map using the following terms:

2. Define reaction rate. What does the reaction rate Indicate about a partucular chemical reaction?
3. In addition to colliding, what else must happen in order for a reaction to occur?
4. Use the collision theory to discuss how the following factors affect the rate of a chemical reaction:
a. Temperature
b. Concentration
c. Surface area
5. What role does the reactivity of the reactants play in determining the rate of a chemical reaction?
6. Answer the following questions about catalysts:
a. What is the difference between a homogeneous and a heterogeneous catalyst?
b. How does a catalyst affect the activation energy for a chemical reaction?
c. What is the result of adding a catalyst to a reaction?
7. Would the changes listed below increase or decrease the rate of the following reaction:

$$
\mathrm{I}_{2}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{ICl}(\mathrm{~g})
$$

a. decreasing temperature \qquad C. crushing I_{2}
b. Increasing $\left[\mathrm{Cl}_{2}\right]$
d. adding a catalyst \qquad

Activation Energy Diagrams

Use the graph below to answer questions 1-7: Include labels on any numerical values.

1. Label the position of the reactants on the graph.
2. Label the position of the products on the graph.
3. Lable the position of the activated complex on the graph.
4. How much energy do the reactants have at the start of the reaction? \qquad
5. What is the activation energy for this reaction?

this on the graph.
6. How much energy do the products have at the end of the reaction? \qquad
7. Is this reaction exothermic or endothermic? Explain your answer using evidence from the graph.
8. Draw an energy diagram on the axes below using the given information. Be sure to include labels and units on both the x axis and y-axis.

Potential energy of reactants $=350 \mathrm{~kJ} / \mathrm{mole}$
Activation energy $=100 \mathrm{~kJ} / \mathrm{mole}$
Potential energy of products $=250 \mathrm{~kJ} / \mathrm{mole}$

9. Is this reaction exothermic or endothermic? Explain your answer using evidence from the graph.
10. You add a catalyst to the reaction you graphed in question 8 , which lowers the activation energy of the reaction from 100 $\mathrm{kJ} /$ mole to $50 \mathrm{~kJ} / \mathrm{mole}$. Draw the energy diagram of the catalyzed reaction on the same set of axes above (use a dashed line or a different color and label the reaction with the catalyst).

Guided Notes: Rate Laws

Review: Molarity

- measures the \qquad
- solute is measured in \qquad
- solution is measured in \qquad
- abbreviated with a capital \qquad
Practice:

1. What is the molarity of a solution that has 10 grams of sodium sulfate in 100 mL of solution?

Rate Laws:

- increased concentration of a \qquad usually \qquad the rate of a reaction
- however, \qquad concentration might actually have little effect on the rate of \qquad

Rate Order and Rate Laws:

- For the reaction $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}$
- General form of Rate Law:

$$
\text { rate }=k[A]^{x}[B]^{y}
$$

- rate laws are found \qquad
- change the concentration of \qquad at a time to see how the rates are affected
- Rate units: M / s (change in molarity per second)

Rate Law Example \#1:

$$
\text { Reaction: } \mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}
$$

Trial	$[A]$	$[B]$	Rate (M/sec)
1	1.0	2.0	0.50
2	2.0	2.0	1.00
3	2.0	6.0	3.00

1. What happens to
2. What is the rate order of reactant A ?
3. What happens to the rate when B triples?
4. What is the rate order of reactant B ?
5. What is the rate law for this reaction?

Rate Law Example \#2:
Reaction: $\mathrm{A} \rightarrow \mathrm{B}+\mathrm{C}$

Trial	$[\mathrm{A}]$	Rate (M/sec)
1	2.5	1.00
2	5.0	4.00
3	7.5	16.00

1. What happens to the rate when $[\mathrm{A}]$ doubles?
2. What is the rate order of reactant A ?
3. What is the rate law for this reaction?

Rate Law Example \#3:
Reaction: $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}$

Trial	$[\mathbf{A}]$	$\mathbf{B}]$	Rate (M/sec)
1	2.0	4.0	3.0
2	6.0	2.0	1.5
3	6.0	4.0	3.0

1. What happens to the rate when [A] triples?
2. What is the rate order of reactant A ?
3. What happens to the rate when $[B]$ doubles?
4. What is the rate order of reactant B ?
5. What is the rate law for this reaction?
6. Use the data table below to answer questions about the reaction $\mathbf{A}_{\mathbf{2}}+\mathbf{B}_{\mathbf{2}} \rightarrow \mathbf{2} \mathbf{A B}$

Trial		$\left[\mathrm{A}_{2}\right]$	$\left[\mathrm{B}_{2}\right]$
Rate $(\mathrm{M} / \mathbf{s})$			
1	0.01	0.05	0.01
2	0.01	0.10	0.02
3	0.02	0.10	0.04

a. What trials do you use to determine the effect of $\left[\mathrm{A}_{2}\right]$ on the reaction rate?
b. What is the rate order (the exponent) with respect to $\left[A_{2}\right]$?
c. What trials do you use to determine the effect of $\left[B_{2}\right]$ on the reaction rate?
d. What is the rate order (the exponent) with respect to $\left[B_{2}\right]$?
e. What is the rate law for this reaction?
2. Use the data table below to answer questions about the reaction $\mathbf{C}+\mathbf{D} \rightarrow \mathbf{E}$

Trial	[C]	[D]	Rate (M/s)
1	0.1	0.01	0.02
2	0.1	0.02	0.04
3	0.2	0.02	0.16

a. What trials do you use to determine the effect of [C] on the reaction rate?
b. What is the rate order (the exponent) with respect to [C]?
c. What trials do you use to determine the effect of [D] on the reaction rate?
d. What is the rate order (the exponent) with respect to [D]?
e. What is the rate law for this reaction?
3. Use the data table below to answer questions about the reaction $\mathbf{C}+\mathbf{D} \rightarrow \mathbf{E}$

| Trial | | $[\mathrm{C}]$ | $[\mathrm{D}]$ |
| :---: | :---: | :---: | :---: | Rate (M/s)

a. What trials do you use to determine the effect of [C] on the reaction rate?
b. What is the rate order (the exponent) with respect to [C]?
c. What trials do you use to determine the effect of [D] on the reaction rate?
d. What is the rate order (the exponent) with respect to [D]?
e. What is the rate law for this reaction?
4. Use the data table below to answer questions about the reaction $\mathbf{F}+\mathbf{G} \rightarrow \mathbf{H}$

| Trial | | $[F]$ | $[G]$ |
| :---: | :---: | :---: | :---: | Rate (M/s)

a. What trials do you use to determine the effect of [F] on the reaction rate?
b. What is the rate order (the exponent) with respect to [F]?
c. What trials do you use to determine the effect of [G] on the reaction rate?
d. What is the rate order (the exponent) with respect to [G]?
e. What is the rate law for this reaction?

Reaction Order and Rate Law Expression Worksheet \#2

1. Reaction: $C+D \rightarrow E$

Exp \#	[C]	[D]	Rate $\left(\mathrm{mole} \mathrm{dm} \mathrm{dm}^{-3}\right)$
1	0.1	0.01	0.02
2	0.1	0.02	0.04
3	0.1	0.03	0.06
4	0.1	0.04	0.08
5	0.2	0.04	0.08
6	0.3	0.04	0.08

a. What is the rate order of reactant C ?
b. What is the rate order of reactant D ?
c. What is the rate law for the reaction?
2. Reaction: $\mathrm{F}+\mathrm{G} \rightarrow \mathrm{H}$

Exp \#	[F]	[G]	Rate $\left(\mathrm{mole} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$
1	0.01	0.4	0.02
2	0.02	0.4	0.04
3	0.03	0.4	0.06
4	0.1	0.2	5
5	0.1	0.4	10
6	0.1	0.6	15

a. What is the rate order of reactant F?
b. What is the rate order of reactant G ?
c. What is the rate law for the reaction?
3. Reaction: $\mathrm{C}+\mathrm{D} \rightarrow \mathrm{E}$
a. What is the rate order of reactant C ?
b. What is the rate order of reactant D ?
c. What is the rate law for the reaction?

Exp \#	[C]	[D]	Rate $\left(\mathrm{mole} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$
1	0.1	0.01	0.02
2	0.1	0.02	0.08
3	0.1	0.03	0.18
4	0.1	0.04	0.32
5	0.2	0.04	1.28
6	0.3	0.04	2.88

4. Reaction: $F+G \rightarrow H$

Exp \#	[F]	[G]	$\begin{gathered} \text { Rate } \\ \left(\mathrm{mole} \mathrm{dm}^{-3}\right. \\ \left.\mathrm{s}^{-1}\right) \\ \hline \end{gathered}$
1	0.01	0.4	0.02
2	0.02	0.4	0.16
3	0.03	0.4	0.54
4	0.1	0.2	5
5	0.1	0.4	20
6	0.1	0.6	45

a. What is the rate order of reactant F ?
b. What is the rate order of reactant G ?
c. What is the rate law for the reaction?
5. Reaction: $\mathrm{A}_{2}+\mathrm{B}_{2} \rightarrow 2 \mathrm{AB}$

Exp \#	$\left[\mathrm{A}_{2}\right]$	$\left[\mathrm{B}_{2}\right]$	Rate $\left(\mathrm{mole} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$
1	0.001	0.001	0.01
2	0.001	0.002	0.02
3	0.001	0.003	0.03
4	0.001	0.004	0.04
5	0.002	0.004	0.16
6	0.003	0.004	0.36

a. What is the rate order of reactant A_{2} ?
b. What is the rate order of reactant B_{2} ?
c. What is the rate law for the reaction?

Guided Notes: Keq

2 Types of Reactions:

1. Completion Reactions:
a. Results in a complete \qquad of \qquad to \qquad
i. Example:
b. 2 indicators of a completion reaction are formation of a \qquad or formation of a \qquad
c. most reactions \qquad go to completion
d. have a \qquad sided arrow in its equation
2. Reversible Reactions:
a. Can occur in both the \qquad and \qquad directions
b. Example:
i. equations have a \qquad sided arrow
c. forward arrow indicates \qquad
i.
d. reverse arrow indicates \qquad
i.
e. both reactions will \qquad

Chemical Equilibrium:

A state in which the \qquad and \qquad reactions take place at \qquad rates. $=$ \qquad

- The amount of the \qquad and \qquad are \qquad at equilibrium
- Equilibrium is \qquad - reactions are still occurring, even though we may not be able to see it
- Sketch the graph below and describe what is being shown about the concentrations of the substances.
- What happens to the forward rate as it approaches equilibrium?
- What happens to the reverse rate as it approaches equilibrium?
- What is true about the forward and the reverse rate at equilibrium?

The Law of Chemical Equilibrium:

- At a given \qquad , a chemical system may reach a state in which a particular \qquad of
\qquad and \qquad concentrations has a constant value.
- General example reaction:
- What do the lower case letters represent?
- What do the capital letters represent?
- Write the general equilibrium constant expression:
- [] = \qquad
- Keq:
\circ
○
○
○
- If $\mathrm{Keq}>1$

○
○ \qquad

- if Keq < 1

○
○

- Which is better for business?

2 Types of Equilibrium:

1. Homogenous equilibrium: \qquad
2. Heterogeneous equilibrium: \qquad
a. if any of the substances in the reactions are \qquad or \qquad , leave them out of Keq
b. only use \qquad and \qquad solutions in the expression for Keq

Example 1: Write the equilibrium expression for the following equation:
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}$
K еq $=$

Example 2: Write the equilibrium expression for the following equation:

$$
\mathrm{C}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \leftrightarrow \mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2}(\mathrm{~g})
$$

$\mathrm{Keq}=$

Example 3: Calculate Keq for the reaction below when $\left[\mathrm{SO}_{3}\right]=0.0160 \mathrm{M},\left[\mathrm{SO}_{2}\right]=0.00560 \mathrm{M}$, and $\left[\mathrm{O}_{2}\right]=0.0210 \mathrm{M}$. Are the products or the reactants favored?

$$
2 \mathrm{SO}_{3(\mathrm{~g})} \leftrightarrow 2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}
$$

Check for Understanding: Determine the value of Keq at 400K for the decomposition of phosphorous pentachloride if:
$\left[\mathrm{PCl}_{5}\right]=0.135 \mathrm{M},\left[\mathrm{PCl}_{3}\right]=0.550 \mathrm{M}$, and $\left[\mathrm{Cl}_{2}\right]=0.550 \mathrm{M}$.
$\mathrm{PCl}_{5}(\mathrm{~g}) \leftrightarrow \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$

1. Write the equilibrium constant $\left(\mathrm{K}_{\text {eq }}\right)$ expressions for the following homogeneous equilibria.
a. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}(\mathrm{g}) \leftrightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$
b. $3 \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{O}_{3}(\mathrm{~g})$
c. $2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 4 \mathrm{NO}(\mathrm{g})$
d. $4 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
e. $4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
f. $\quad \mathrm{PCl}_{5}(\mathrm{~g}) \leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
2. Write the equilibrium constant $\left(\mathrm{K}_{\mathrm{eq}}\right)$ expressions for the following heterogeneous equilibria.
a. $\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{l}) \leftrightarrow \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})$
b. $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
c. $\mathrm{CO}(\mathrm{g})+\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s}) \leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{FeO}(\mathrm{s})$
d. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}(\mathrm{~s}) \leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

For the following problems, show all of your work including set-up (with $K_{\text {eq }}$ expression) and answer with units if needed.
3. At 773 K , the reaction $\mathbf{2 N O}(\mathbf{g})+\mathbf{O}_{2}(\mathbf{g}) \leftrightarrow \mathbf{2} \mathbf{N O}_{2}(\mathbf{g})$ produces the following concentrations: $[\mathrm{NO}]=3.49 \times 10^{-4} \mathrm{M}$; $\left[\mathrm{O}_{2}\right]=0.80 \mathrm{M} ;\left[\mathrm{NO}_{2}\right]=0.25 \mathrm{M}$. Calculate the equilibrium constant $\left(\mathrm{K}_{\mathrm{eq}}\right)$ for this reaction.
4. The chemical equation for the decomposition of formamide is: $\mathbf{H C O N H}_{\mathbf{2}} \mathbf{(g)} \leftrightarrow \mathbf{N H}_{\mathbf{3}} \mathbf{(g)}+\mathbf{C O}(\mathrm{g})$ Calculate $\mathrm{K}_{\text {eq }}$ using the following equilibrium data: $\left[\mathrm{HCONH}_{2}\right]=0.0637 \mathrm{M},\left[\mathrm{NH}_{3}\right]=0.518 \mathrm{M}$ and $[\mathrm{CO}]=0.518 \mathrm{M}$.
5. Calculate $\mathrm{K}_{\text {eq }}$ for the reaction for iron and water if the equilibrium concentrations are as follows: $\left[\mathrm{H}_{2} \mathrm{O}\right]=1.00 \mathrm{M}$ \& $\left[\mathrm{H}_{2}\right]=4.50 \mathrm{M} . \quad 2 \mathrm{Fe}(\mathbf{s})+3 \mathbf{H}_{2} \mathbf{O}(\mathrm{~g}) \leftrightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathbf{s})+3 \mathbf{H}_{2} \mathbf{(g)}$
6. At 793 K , the equilibrium constant for the reaction $\mathbf{N C l}_{\mathbf{3}} \mathbf{(g)}+\mathbf{C l}_{\mathbf{2}} \mathbf{(g)} \leftrightarrow \mathbf{N C l}_{5} \mathbf{(g)}$ is 39.3.
a. Do the products or the reactants dominate in this equilibrium? Explain your answer in complete sentences.
b. If the equilibrium constant for this reaction were less than 1 , would the reactants or products be dominant? Explain your answer in complete sentences.
7. The equilibrium constant is 9.36 for the following reaction: $\mathbf{A}(\mathbf{g})+3 \mathbf{B}(\mathbf{g}) \leftrightarrow 2 \mathbf{C}(\mathbf{g})$. The table below provides concentration data for two different reaction mixtures of these gases.

	A (mol/L)	B (mol/L)	C (mol/L)
Mixture 1	0.716	0.208	0.425
Mixture 2	0.562	0.491	0.789

a. Calculate the K_{eq} for each mixture. Use the back of the sheet to show your work.
b. Are both reactions at equilibrium? Explain your answer in complete sentences.

Guided Notes: Le'Chatelier's Principle

Background Knowledge:

1. What happens if you are running on a treadmill and someone increases the speed?
2. What happens if you are riding your bike and the wind picks up?
-- These are \qquad being put on you.
--Chemists put \qquad on chemical reactions.
Why do chemists want to put stresses on chemical reactions?
--Chemists put stresses on chemical reactions to produce more \qquad .
-- \qquad chemists use this.

Le'Chatelier's Principle: If a \qquad is applied to a system at \qquad the system shifts in the direction that relieves the \qquad -

Changes in Concentration:

Adding Reactants

1. What will happen to the balance if you add more reactants?

2. What happens if I add more CO ?

$$
\mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

3. The reaction will shift to the \qquad .

Removing Products

1. What will happen to the balance if you remove products?
reactants products

2. What happens if I remove $\mathrm{H}_{2} \mathrm{O}$?

$$
\mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

3. The reaction will shift to the \qquad .

Adding Products

1. What will happen to the balance if you add products?

2. What happens if I add $\mathrm{H}_{2} \mathrm{O}$?

$$
\mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

3. The reaction will shift to the \qquad .

Decreasing the Volume

1. What happens to the pressure when volume is decreasing? \qquad
2. What happens to the number of collisions? \qquad
3. To determine if the reaction will shift, we need to look at the number of \qquad of the reactants and products.

$$
\mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longleftrightarrow \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

4. Which side of the reaction contains more moles? \qquad
5. Volume only has an effect on the reaction if the \qquad of reactants differs from the number of products.
6. This reaction has more moles of \qquad so the reaction will shift to the \qquad .

Changes in Temperature

1. Alters both the \qquad and the \qquad .
2. Think of heat as either a \qquad or \qquad .
3. Is this an exothermic or an endothermic reaction? \qquad
4. Is heat considered a product or reactant in the reaction below? \qquad

$$
\mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longleftrightarrow \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O}+\text { heat }
$$

5. In this reaction, adding more heat would shift the reaction to the \qquad .

Addition of a Catalyst

1. \qquad up a reaction, but does so in both ways.
2. \qquad is just reached \qquad .

Summary: Le'Chatelier's Principle: Changes in \qquad and make a difference in the amount of product formed in a reaction.

Practice:
For the reaction below, which change will cause the reaction to shift to the right?

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\text { heat }<--->\mathrm{CS}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g})
$$

a. decrease the concentration of dihydrogen sulfide
b. increase the pressure on the system
c. increase the temperature on the system
d. increase the concentration of carbon disulfide
e. decrease the concentration of methane

Guided Notes: Ksp

Solubility Product Constant - K ${ }_{\text {sp }}$

- K_{sp} :
- General Equation:
- Since the reactant is ALWAYS a \qquad $\mathrm{K}_{\mathrm{sp}}=$ \qquad
- $\quad \mathrm{b}$ and c are the \qquad on the ions
- The smaller K_{sp} is the \qquad soluble salt
- K_{sp} can be used to calculate the \qquad of \qquad .

Practice - $\mathrm{K}_{\text {sp }}$

1. Write the K_{sp} expression for the solvation of $\mathrm{Ag}_{2} \mathrm{SO}_{4}$.

First, determine the ions that will be formed:

Put the ions in the K_{sp} expression (must include charges!):

Use the coefficients to determine how many moles of each ion will be formed. Put those numbers in for b \& c (as exponents):
(if the exponent is \qquad it is not used in the expression)
2. Write the K_{sp} expression for the solvation of magnesium hydroxide. Formula: \qquad
3. Write the Ksp expression for the solvation of calcium phosphate. Formula: \qquad
4. Calculate the solubility for AgCl at 298 K . $\left(\mathrm{Ksp}=1.8 \times 10^{-10}\right)$.
a. Write the Ksp expression for the solvation of AgCl .
b. Simply the expression.
c. Fill in your Ksp value and solve.
5. Calculate the solubility for CaCO_{3} at 298 K . ($\mathrm{Ksp}=3.4 \times 10^{-9}$).
6. Calculate the Ksp for PbCl_{2} with a solubility of $5.0 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$.
a. Write the Ksp expression for the solvation of PbCl_{2}.
b. Simplify the expression.
c. Fill in your " x " (molar concentration) and solve.
7. Calculate the Ksp for BaCrO_{4} with a solubility of $1.5 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$.

Ksp Practice Problems

Use your notes or read the portion of "Using solubility product constants" (pg.614-617). Pay attention to any and all examples!

1. What is the solubility product constant and when is it used?
2. How can you calculate ion concentration using the solubility product constant?
3. Write the Ksp expression for the following compounds:
a. PbF_{2}
b. $\mathrm{Zn}(\mathrm{OH})_{2}$
c. MgCO_{3}
4. Use the Ksp values from the table to calculate the following: (Show all of your work)
a. The solubility in $\mathrm{mol} / \mathrm{L}$ of PbCrO_{4}.
b. The solubility in mol/L of $\mathrm{Ag}_{2} \mathrm{SO}_{4}$.
c. [F-] in a saturated solution of CaF_{2} at equilibrium.

Compound	Ksp at 298 K
PbCrO_{4}	2.3×10^{-13}
$\mathrm{Ag}_{2} \mathrm{SO}_{4}$	1.2×10^{-5}
CaF_{2}	3.5×10^{-11}

Unit 10 Review - Accelerated Chemistry

1. What is a reaction rate and what units are used with reaction rates?
2. What is the collision theory?
3. List the factors that affect the rate of a reaction. Explain how each factor affects the rate.

A
B
C

D

E
4. Draw a reaction diagram for an exothermic reaction and label the following: reactants, products, activation energy, activated complex.
5. For the reaction $3 \mathrm{ClO}^{-}(\mathrm{aq}) \rightarrow \mathrm{ClO}_{3}^{-}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})$ doubling the concentration of ClO^{-}quadruples the initial rate of formation of $\mathrm{ClO}_{3}{ }^{-}$. What is the rate expression for the reaction?
6. The reaction $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{Cl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}(\mathrm{aq})+\mathrm{N}_{2}(\mathrm{~g})+\mathrm{HCl}(\mathrm{aq})$ is first order in $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{Cl}\right]$ and zero order in [$\mathrm{H}_{2} \mathrm{O}$]. What is the rate expression?
7. For the reaction $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{AB}$, the following data was obtained: a. Write the rate expression for the reaction.
8. What 2 factors will drive a reaction to completion?
a)
b)
9. Describe a reversible reaction. Give an example.

Trial	Initial [A]	Initial [B]	Initial Rate $\mathrm{mol} / L^{*} \mathrm{~min}$
1	0.480 M	0.190 M	0.350
2	0.480 M	0.380 M	0.350
3	0.240 M	0.190 M	0.087

10. Describe dynamic equilibrium. Give an example.
11. At equilibrium how do the forward and reverse reaction rates compare? The forward rate \qquad the reverse rate.
12. State Le Chatelier's Principle.
13. What are the 3 possible stresses we can apply to a system at equilibrium?
a) \qquad b) \qquad c) \qquad
14. Use the reaction $\left(2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \leftarrow \rightarrow 2 \mathrm{SO}_{3(\mathrm{~g})}+\right.$ heat) to determine what will happen (shift left/right, no change) if the following stresses are applied:
a. SO_{2} is added \qquad b. Volume is increased \qquad c. Heat is added \qquad
15. What is the general formula for the equilibrium constant, K_{eq} ?
16. What does the value of K_{eq} tell a chemist about a reaction if....

If the value of $K_{\text {eq }}$ is greater than $1 \ldots .$.

If the value of $\mathrm{K}_{\text {eq }}$ is less than $1 \ldots$
17. Write the equilibrium constants for these reversible reactions - ALL CHEMICALS ARE GASES:
a. $2 \mathrm{~A}+\mathrm{B} \longleftrightarrow \mathrm{C}+3 \mathrm{D}$
b. $\mathrm{NO}+\mathrm{O}_{2} \longleftrightarrow \mathrm{NO}_{3}$
c. $\mathrm{CO}_{2}+\mathrm{H}_{2} \leftrightarrow \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}$
18. Calculate K_{eq} for reaction $\mathbf{1 7 a}$ if the equilibrium concentrations are: $[\mathrm{A}]=0.100 \mathrm{M},[\mathrm{B}]=0.230 \mathrm{M},[\mathrm{C}]=1.17 \mathrm{M}, \&$ $[\mathrm{D}]=2.19 \mathrm{M}$.
19. The equilibrium constant in $\mathbf{1 7 b}$ is .025 . If $[\mathrm{NO}]=.36 \mathrm{M}$ and $\left[\mathrm{O}_{2}\right]=.21 \mathrm{M}$, what is the equilibrium concentration of NO_{3} ?
20. If K_{eq} in $\mathbf{1 7 c}$ is $6.37 \times 10^{-3},\left[\mathrm{CO}_{2}\right]=0.037 \mathrm{M},\left[\mathrm{H}_{2}\right]=0.28 \mathrm{M}$, and $[\mathrm{CO}]=0.084 \mathrm{M}$, calculate $\left[\mathrm{H}_{2} \mathrm{O}\right]$.
21. Describe $K_{\text {sp }}$.
22. What is the generic formula for $K_{\text {sp }}$?
23. Write the expression for $\mathrm{K}_{\text {sp }}$ for the following sparingly soluble salts:
$\mathrm{PbBr}_{2} \longrightarrow \quad \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)$ \qquad
24. Calculate the Ksp of CaSO_{4} if a saturated solution has a concentration of 1.58×10^{-4}.
25. The solubility product constant of BaCO_{3} is 2.6×10^{-9}. Calculate the solubility (in mol/L) of BaCO_{3}.
26. The solubility product constant of Ag 2 CrO 4 is 1.1×10^{-12}. Calculate the $[\mathrm{Ag}+]$ in a solution of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ at equilibrium.

Daily Questions \& Practice
\square

