\qquad
(Formula Sheet) -given to you on the semester test

Element	Reaction
Li	
Rb	
K	React with cold $\mathrm{H}_{2} \mathrm{O}$ and acids, replacing
Ba	hydrogen
Ca	
Na	
Mg	
Al	React with acids or steam, but usually not
Mn	liquid water to replace hydrogen
Zn	
Fe	
Ni	React with acids but not water to replace
Sn	hydrogen
Pb	
H_{2}	
Cu	React with oxygen to form oxides
Hg	
Ag	
Pt	
Au	
F_{2}	
Cl	
Br	
I_{2}	

Listed from most reactive to least
Solubility Rules
$\mathrm{NO}_{3}{ }^{1-}$ All nitrates are soluble.
Cl^{1-} All chlorides are soluble except $\mathrm{AgCl}, \mathrm{Hg}_{2} \mathrm{Cl}_{2}, \mathrm{PbCl}_{2}$
$\mathrm{NH}_{4}{ }^{+}$All Ammoniums are soluble
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$All Acetates are soluble
Group^{1} All group one (alkali metals) are soluble
$\mathrm{SO}_{4}{ }^{2-}$ Most sulfates are soluble; exceptions include: $\mathrm{SrSO}_{4}, \mathrm{BaSO}_{4}$,
\quad and PbSO 4 , CaSO
4
is slightly soluble.
*Assume all other ionic compounds are insoluble

Other information and tips

- There are 85 multiple-choice questions on the district semester test.
- Test is on the computer.
- There is a 28 point district performance task
- You will have 50 minutes for the performance task and 90 minutes for the multiple choice test.
- Bring two \#2 lead pencils, a good eraser, AND a calculator.
- Bring something to study or read after you finish the test
- Try to get a good night's sleep
- Eat a good breakfast. This will help put you in a good mood and help your brain function
- Drink water ($\mathrm{H}_{2} \mathrm{O}$). Avoid caffeine $\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}\right)$ and sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$

Standards	Number of test questions
$\begin{array}{l}\text { HS-PS1-1 } \\ \text { based on the patterns of electrons in the outermost to energy level of atoms. }\end{array}$	$\begin{array}{c}11 \text { Multiple Choice \& } \\ \text { Performance Task }\end{array}$
$\begin{array}{l}\text { HS-PS1-2 Construct and revise an explanation for the outcome of a simple chemical reaction } \\ \text { based on the outermost electron states of atoms, trends in the periodic table, and knowledge of t } \\ \text { patterns of chemical properties }\end{array}$	$\begin{array}{c}17 \text { Multiple Choice \& } \\ \text { Performance Task }\end{array}$
$\begin{array}{l}\text { HS-PS1-3 Plan and carry out an investigation to gather evidence to compare the structure of } \\ \text { substances at the bulk scale to infer the strength of electrical forces between particles }\end{array}$	$\begin{array}{c}\text { 27 Multiple Choice \& } \\ \text { Performance Task }\end{array}$
$\begin{array}{l}\text { HS-PS1-7 Use mathematical representations to support the claim that atoms, and therefore ms } \\ \text { are conserved during a chemical reaction }\end{array}$	$\begin{array}{c}\text { 13 Multiple Choice \& } \\ \text { Performance Task }\end{array}$
$\begin{array}{l}\text { HS-PS1-8 Develop models to illustrate the changes in the composition of the nucleus of the a } \\ \text { and the energy released during the processes of fission, fusion, and radioactive decay }\end{array}$	$\begin{array}{c}\text { 5 Multiple Choice \& } \\ \text { Performance Task }\end{array}$
$\begin{array}{l}\text { HS-ESS1-3 Communicate scientific ideas about the way stars, over their life cycle, produce } \\ \text { elements }\end{array}$	$\begin{array}{c}\text { 9 Multiple Choice \& } \\ \text { Performance Task }\end{array}$
DD-CHEM1-1 General Scientific Practices (Significant Figures)	
Performance Task	

A. Unit 1 \& 2 Atomic Structure/Electron Configuration

Be able to:

- differentiate between and determine the number of protons, neutrons, \& electrons in an atom
- write, interpret, \& relate electron configuration orbital notation \& electron dot structure based on the location on the periodic table
- discuss the history of the atomic theory
- relate chemical stability \& the octet rule
- define \& determine the atomic \#, mass \#, and the average atonticDescribe the position \& velocity of an electron in an atom mass of different isotopes

1. What is the difference between fusion and fission?
2. What elements are most abundant in the universe?
3. Describe how elements are formed in stars.
4. What is an alpha particle?
5. What is a beta particle?
6. What type of radiation is the most penetrating: alpha, beta or gamma?
7. Both of the isotopes below are undergoing alpha decay. Complete the reaction.
a. ${ }_{84}^{210} \mathrm{Po} \rightarrow \longrightarrow+$ \qquad
b. ${ }_{92}^{238} U \rightarrow$ \qquad $+$ \qquad
8. Both of the isotopes below are undergoing beta decay. Complete the reaction.
a. ${ }_{6}^{14} C \rightarrow$ \qquad $+$ \qquad
b. $\quad{ }_{38}^{90} \mathrm{Sr} \rightarrow$ \qquad $+$ \qquad
9. Write the nuclear reaction for the bombardment (fusion) of uranium-232 with an alpha particle.
10. The smallest particle of any element is called $a(n)$ \qquad .
11. Within an atom, the area of most mass is the \qquad .
12. Within an atom, the area that takes up the most space is the \qquad .
13. Circle " \mathbf{p} " proton, " \mathbf{n} " neutron, and/or "e" electron. There may be more than one answer.

$\mathrm{p} \quad \mathrm{n}$ e	1+ charge	p n e	located in "empty space" around nucleus
p n e	1- charge	p n e	must be the same in an element and its ion
p n e	changes to gain stability (form an ion)	p n e	no charge
p n e	contributes to most of an element's mass	p n e	relatively "big" particle(s) ($\sim 1 \mathrm{amu}$)
p $n \mathrm{e}$	determines element's identity	p n e	same in different isotopes of the same element
p n e	determines element's reactivity	p n e	varies in different isotopes of an element
p n e	located in nucleus	p n e	very small particle(s) (1/1840 amu)

14. Define isotope.
15. What is another name for the electrons in the outer energy level? \qquad
16. Fill in the tables with the correct information

Name Notation	Symbol Notation	Protons	Electrons	Neutrons	Mass \#	Atomic \#
Chromium-53					53	

Name Notation	Symbol Notation	Protons	Electrons	Neutrons	Mass \#	Atomic \#
				23		19
	Orbital notation					

Name Notation	Symbol Notation	Protons	Electrons	Neutrons	Mass \#	Atomic \#
			19		41	
	Nobel Gas notation					

17. Write the electron configurations for the following ions:
\qquad
O
Ca Ti^{2+}
18. There are 2 isotopes of Boron: Boron-10 and Boron-11. Which isotope is more abundant and why?
19. Element X has a mass of 19.90 amu . There are 3 isotopes. $X-18, X-19$ and $X-20$. Which isotope is more abundant and why?

B. Unit 2 Periodic Table

Be able to:

- describe the properties of major groups on the periodic table
- identify properties of metals, non-metals, and metalloids
- identify and use the trends on the periodic table (electronegativity, ionization energy, atomic radius, shielding effect, nuclear charge, oxidation number)
- relate electron configuration and ion formation and oxidation number based on the location on the periodic table

Match the family name to the electron configuration
20. \qquad alkali metal
a. $1 s^{2} 2 s^{2} 2 p^{6}$
21. \qquad alkaline-earth metal
b. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$
22. \qquad transition metal
c. $1 s^{2} 2 s^{2} 2 p^{5}$
23. \qquad halogen
d. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10}$
24. \qquad noble gas
e. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$
25. Circle " m " metal, " $m \mathrm{~m}$ " metalloid, or " nm " nonmetal.
a. m md nm usually brittle solids and gases
f. m md nm malleable and ductile
b. m md nm forms negative ions
g. m md nm poor conductors
c. m md nm form positive ions
h. m md nm semiconductors
d. m md nm good conductors
i. $\quad \mathbf{m} \mathbf{m d} \mathbf{n m}$ shiny, hard, dense
e. m md nm like metals and nonmetals
26. Identify what type of element is present: circle Metal (m), Metalloid (md), or Nonmetal (nm), then identify the family the element belongs to.
a. Fe
m md nm
b. Si
m md
nm

27. Elements in the same \qquad have similar properties because \qquad .
28. All \qquad are unreactive because they have a full octet (full s and p orbitals)
29. Complete the table concerning Periodic Trends

Trend	Definition	Period Trend	Group Trend	Choose which element has the larger value
Atomic Radius				a. N or O b. Rb or Fr c. P or Mg
Ionization Energy				d. Ca or Mg e. Mg or S f. F or He
Electronegativity				g. Al or B h. Fe or Cu i. Br or Cl

C. Unit 3 Ionic Compounds

Be able to:

- determine the properties of ionic \& metallic bonds
- determine whether if bond is ionic based on the location on the periodic table
- write formulas and names for ions \& ionic compound

30. An ionic bond is between a \qquad and a \qquad element.
31. What is a cation? \qquad an anion? \qquad

Determine if the property describes Ionic, Covalent or Metallic Bonding

32. I C M Created through the transfer of electrons
33. I C M Attraction of + and - ions
34. I C M Created through the sharing of electrons
35. I C M Conductor of electricity in the solid state
36. I C \mathbf{M} Conducts electricity when dissolved in water
37. I C M Individual molecules
38. I C M Malleable, ductile and lustrous
39. I C M Combination of a metal and a nonmetal
40. I C M Hard yet brittle solids
41. I $\mathbf{C} \quad \mathbf{M}$ High melting and boiling points
42. I C \mathbf{M} Low melting and boiling points
43. I C M Poor conductor of heat
44. I C M Always solids at room temperature
45. I C M Never conducts electricity

46. I C M All states of matter at room temperature
47. What is the basic structure of all ionic compounds? \qquad (see the picture above for a hint)

D. Unit 3 \& 4 Covalent Bonding

Be able to:

- determine the properties of covalent bonds
- use Lewis Structures to determine shapes of molecules (including expanded octets)
- use Lewis Structures to determine polarity
- use electronegativity to determine the bond type
- Determine the orbital hybridization, sigma and pi bonding in covalent compounds
- determine the type of bond based on electronegativity differences

48. In covalent compounds, electrons are \qquad in order to complete the atom's \qquad .
49. Covalent bonds normally form between 2 \qquad elements.
50. Another name for covalent compounds is \qquad .
Fill in the chart with the correct name of the substance

Name	Formula
nitrogen trioxide	51.
calcium nitrate	52.
trisulfur heptoxide	53.
54.	$\mathrm{NH}_{4} \mathrm{Cl}$
55.	$\mathrm{P}_{2} \mathrm{O}_{5}$
ammonium oxide	56.
57.	$\mathrm{Na}_{2} \mathrm{SO}_{4}$
58.	$\mathrm{~K}_{3} \mathrm{PO}_{4}$
zinc hydroxide	59.
iron (II) chloride	60.
61.	MnCO_{3}
62.	$\mathrm{Sn}_{2}\left(\mathrm{HCO}_{3}\right)_{4}$
Silver nitrite	63.
Nickel (III) sulfite	64.
65.	CO_{2}
66.	NH_{3}
67.	CH_{4}
Aluminum acetate	68.

69. Which elements need Roman numerals included in the name? \qquad
70. What does a Roman numeral in a name represent? \qquad
71. Describe the difference between a polar bond and a nonpolar bond. \qquad
\qquad
\qquad
72. Between covalent and ionic compounds, which has the higher boiling point? \qquad
73. Between covalent and ionic compounds, which will most likely be gases at room temperature? \qquad
74. Determine if the following bonds are nonpolar, polar or ionic.
i. $\mathrm{H}-\mathrm{H}$
ii. Na-F
iii. $\mathrm{H}-\mathrm{Cl}$
75. Ionic bonds are always between a \qquad and a \qquad .
76. What are the requirements for a nonpolar molecule? \qquad
77. Which shapes could fit the above requirements? \qquad
78. What are the requirements for a polar molecule? \qquad
79. What shapes could fit the above requirements? \qquad
80. Complete the chart below
$\left.\begin{array}{|c|c|c|c|}\hline \begin{array}{c}\text { Formula } \\ \text { Name the substance }\end{array} & \begin{array}{c}\text { Lewis Structure(s) } \\ \text { Include resonance structures if necessary. }\end{array} & \begin{array}{c}\text { Polar or Nonpolar } \\ \text { Molecule? }\end{array} \\ \hline \mathrm{N}_{2} & & & \\ \hline \mathrm{CO}_{2} & & & \\ \hline \text { Shape Name } \\ \text { (lease compound is in the } \delta+\& \delta \text { \& } \text {) }\end{array}\right)$
E. Unit 5 Chemical Reactions Be able to:

- distinguish between the five types of chemical reactions
- write and balance chemical reactions
- interpret the law of conservation of mass
- apply the rules of solubility for writing net ionic equations

81. List the 7 diatomic elements. \qquad
82. We balance chemical equations because \qquad cannot be created or destroyed according to the law of conservation of \qquad .
i. When a reaction is balanced, the number of \qquad are the same on the reactants side and the product side.
ii. When balancing a reaction, only the \qquad can be changed.
83. What is another name for the solid created during a double replacement reaction? \qquad
84. List the 4 states of matter used during a chemical reaction. \qquad
85. What are the $\mathbf{5}$ indicators of a Chemical Change?

Matching - What type of reaction is shown?
86. \qquad $\mathrm{A}+\mathrm{BY} \rightarrow \mathrm{AY}+\mathrm{B}$
a. combustion
87. \qquad b. synthesis
88. \qquad $\mathrm{AY}+\mathrm{BX} \rightarrow \mathrm{AX}+\mathrm{BY}$
c. decomposition
89. \qquad d. single displacement
90. \qquad $\mathrm{AB} \rightarrow \mathrm{A}+\mathrm{B}$
e. double displacement

Balance and identify the type of reaction for each of the following:
91. \qquad C + \qquad $\mathrm{O}_{2} \rightarrow{ }_{-} \mathrm{CO}_{2}$
92. \qquad $\mathrm{C}_{4} \mathrm{H}_{10}+$ \qquad $\mathrm{O}_{2} \rightarrow$ \qquad $\mathrm{CO}_{2}+$ \qquad $\mathrm{H}_{2} \mathrm{O}$
93. \qquad $\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow$ __ $\mathrm{H}_{2} \mathrm{O}+$ \qquad
94. \qquad $\mathrm{Pb}+$ \qquad $\mathrm{PbSO}_{4}+$ \qquad g
95. \qquad $\mathrm{NaCl}+$ \qquad $\mathrm{AgNO}_{3} \rightarrow$ \qquad $-\mathrm{AgCl}+$ \qquad NaNO_{3}
\qquad
\qquad
96. \qquad $\mathrm{Cr}+$ \qquad SnCl_{4} \qquad Sn + \qquad CrCl_{2}
Predict the products for the following reactions and balance them correctly. If there is no reaction, write NR.
97. Combustion: Propane gas $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ combusts.
98. Synthesis: The synthesis of potassium bromide KBr.
99. Single Replacement: Zinc reacts with a solution of silver acetate.
100. Single Replacement: $\quad \mathrm{NaCl}+\mathrm{F}_{2} \rightarrow$
101. Double Replacement: The reaction of barium chloride solution and sodium carbonate solution.
102. Write the net ionic for: A solution of sodium hydroxide reacts with a solution of copper (II) sulfate.
103. Two beakers containing solutions are mixed together in an empty beaker. If lead (II) iodide precipitates out (it's yellow), write the net ionic equation that shows the creation of lead (II) iodide.

F. Unit 6- Data Analysis

Be able to:

- Identify the correct significant digits within a number
- Round a number to correct significant digits
- Convert a number into correct scientific notation
- Use a graph to determine density

104. Turn the following numbers into the correct scientific notation format
a. 0.000909 meters \qquad
b. 12,000,000 liters \qquad c. 96.56 grams

- Use the density formula to solve for mass or volume
- Determine if a dimensional analysis problem has been solved correctly

Determine the number of significant digits in each number.

105.	3.204	-	107.	0.000001	-	109.	0.10100	-
106.	1,000	108.	101.010	-	110.	89.250	-	

Round each number to the specified significant digits.
111. $569 \rightarrow 1$ sig. dig. 112. $0.02509 \rightarrow 2$ sig. dig. 113. $865,900 \rightarrow 3$ sig. dig. $\quad 114 . \quad 100.0023 \rightarrow 4$ sig. dig.

Adding with Significant Digits

115. Three students had peanuts and placed them in a jar after measuring the mass of their sample. What is the total mass of the peanuts in the jar? Student 1: 15.23 g , Student 2: 16.2 g and Student 3: 17 g .

Dimensional analysis - error recognition - Find the error in the dimensional analysis problem, then fix the error and come up with the correct answer.
116. How many kilograms are equal to 9.65 oz ?

9.65 oz	28.35 g	$1000 \mathrm{~kg}=2.74 \times 10^{5} \mathrm{~kg}$
	1 oz	1 g

117. How many liters are equal to $10.32 \mathrm{~cm}^{3}$?

$10.32 \mathrm{~cm}^{3}$	1 mL	1000 mL	
	$1 \mathrm{~cm}^{3}$	1	L

G. Unit 6-The Mole

Be able to:

- Using the mole and molar mass, make conversions between moles, mass, and number of particles
- Use molar mass to calculate percent composition, empirical, and molecular formulas

118. $1 \mathrm{~mole} \mathrm{Fe}=$ \qquad atoms $\mathrm{Fe}=$ \qquad grams Fe
119. Calculate the number of atoms in a gold sample containing 333 grams.
120. Calculate the mass (g) of 1.34×10^{25} atoms of Lead.
121. Determine the mass (g) of 1.17×10^{25} formula units of ammonium dichromate $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$.
122. Circle the empirical formulas, square the molecular formulas.
123. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ - This compound contains \qquad atoms of carbon, \qquad $\mathrm{CH}_{2} \mathrm{O}$, \qquad oxygen.
124. If the molecular compound is $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{6}$, what is the empirical formula? \qquad
125. Determine the empirical formula for a compound having 80.68% mercury, 6.45% sulfur, and 12.87% oxygen.
126. Caffeine is a compound that was found to have the empirical formula $-\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}$. If its molar mass is $194.19 \mathrm{~g} / \mathrm{mol}$ calculate its molecular formula.
127. Determine the molecular formula for a compound that has an empirical formula of $\mathrm{CH}_{2} \mathrm{O}$ and a molar mass of $180 \mathrm{~g} / \mathrm{mol}$.
128. Calculate the percent composition of Lead (II) chloride PbCl_{2}.

H. Unit 6-Stoichiometry
 Objectives

- Use stoichiometry to convert between substances in chemical reactions
- Identify the limiting reactant (reagent) and be able to solve problems based upon it
- Calculate the theoretical and percent yield of a chemical reaction

129. For the reaction: $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$ How many grams of KClO_{3} must be decomposed to yield 30.0 grams of oxygen.
130. If 20.5 moles of Zn react with excess $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the following reaction: $\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{H}_{2}$ a. How many grams of ZnSO_{4} will be produced?
b. How many formula units of zinc sulfate will be produced?
c. If the density of hydrogen gas is $0.886 \mathrm{~g} / \mathrm{L}$, what volume of hydrogen gas will be produced?
131. How many grams of hydrogen gas are formed if 4.21 g of Zinc react with 2.75 g hydrochloric acid according to the following equation: $\mathbf{Z n}+\mathbf{2 H C l} \rightarrow \mathbf{Z n C l}_{2}+\mathbf{H}_{\mathbf{2}}$
132. How many grams of ammonium sulfate can be produced if 30.0 mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$ are reacted with excess NH_{3} according to the following equation: $\mathbf{2} \mathbf{N H}_{3}+\mathbf{H}_{2} \mathbf{S O}_{\mathbf{4}} \rightarrow\left(\mathbf{N H}_{4}\right)_{2} \mathbf{S O}_{4}$
133. Describe the following:
a. Limiting reactant
b. Excess reactant
c. Theoretical Yield

d. Percent Yield

134. For the reaction $\mathrm{NaCl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathrm{AgCl}$, if 10.0 grams of both sodium chloride and silver nitrate react:
a. Identify the limiting and excess reactants.
b. How many grams of silver chloride are produced?
135. When you determine actual yield you do a(n) (Experiment/Calculation)? When you determine theoretical yield you do a(n) (Experiment/Calculation)?
136. Which is generally greater, the actual yield or the theoretical yield?
137. In the production of lead (II) chloride 24.6 grams were produced. It was calculated that the theoretical yield of the reaction was 28.9 g . Calculate the percent yield.
138. What is the percent yield if 9.05 g of zinc react with excess hydrochloric acid to produce 0.259 g hydrogen gas according to the following equation: $2 \mathbf{H C l}(\mathbf{a q})+\mathbf{Z n}(\mathbf{s}) \rightarrow \mathbf{Z n C l}_{2}(\mathbf{a q})+\mathbf{H}_{\mathbf{2}} \mathbf{(g)}$
139. For the reaction $\mathrm{NaCl}(\mathrm{aq})+\mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{AgCl}$ (s) If 10.0 grams of both sodium chloride and silver nitrate react, identify the limiting and excess reactants. How many grams of silver chloride are theoretically produced? If 8.06 grams of precipitate were collected in the lab after filtration and proper drying time, what is the percent yield?
140. In a chemical reaction the total mass of the \qquad must equal the total mass of the
141. In an experiment a student heated 5.00 grams of a compound and recorded the mass of the product to be 3.88 grams. Describe what happened in this reaction and how it appears that mass was lost.

I. Multiple Choice Practice Questions for the Semester Test

1. The density of silver is $10.5 \mathrm{~g} / \mathrm{cm}^{3}$. A piece of silver that occupies a volume of $23.6 \mathrm{~cm}^{3}$ would have a mass of \qquad g.
a. 248
b. 0.445
c. 2.25
d. 112
2. In which of the following numbers are all the zeros significant?
a. 100.090090
b. 0.143290
c. 0.05843
d. 1000
3. The correct formula of Iron (III) bromide is \qquad .
a. FeBr_{2}
b. FeBr_{3}
c. FeBr
d. $\mathrm{Fe}_{3} \mathrm{Br}$
4. The formula for ammonium carbonate is \qquad .
a. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
b. $\mathrm{NH}_{4} \mathrm{CO}_{2}$
c. $\left(\mathrm{NH}_{3}\right)_{4} \mathrm{CO}_{4}$
d. $\left(\mathrm{NH}_{3}\right)_{2} \mathrm{CO}_{3}$
5. Chromium and chlorine form an ionic compound whose formula is CrCl_{3}. The name of this compound is \qquad _.
a. chromium chlorine
c. monochromium trichloride
b. chromium (III) chloride
d. chromium (III) trichloride
6. The formula for aluminum hydroxide is \qquad .
a. AlOH
b. $\mathrm{Al}_{3} \mathrm{OH}$
c. $\mathrm{Al}_{2}(\mathrm{OH})_{3}$
d. $\mathrm{Al}(\mathrm{OH})_{3}$
7. The name of the ionic compound $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$ is \qquad .
a. ammonium phosphate
c. tetrammonium phosphate
b. nitrogen hydrogen phosphate
d. ammonium phosphide
8. Which formula/name pair is incorrect?
a. $\mathrm{Mn}\left(\mathrm{NO}_{2}\right)_{2}$ - manganese (II) nitrite
b. $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ - magnesium nitrate
c. $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2}$ - manganese (II) nitrate
d. $\mathrm{Mg}_{3} \mathrm{~N}_{2}$ - magnesium nitrite
9. Which formula/name pair is incorrect?
a. FeSO_{4} - iron (II) sulfate
c. FeS - Iron (II) sulfide
b. $\mathrm{Fe}_{2}\left(\mathrm{SO}_{3}\right)_{3}$ - iron (III) sulfite
d. $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ - iron (III) sulfide
10. The suffix -ide is used \qquad
a. for monoatomic anion names
c. for the name of the first element in a molecular compound
b. for polyatomic cation names
d. for monoatomic cations
11. The formula for the compound formed between aluminum ions and phosphate ions is \qquad .
a. $\mathrm{Al}_{3}\left(\mathrm{PO}_{4}\right)_{3}$
c. $\mathrm{Al}\left(\mathrm{PO}_{4}\right)_{3}$
b. AlPO_{4}
d. AlP
12. Which metal doesn't require having its charge specified in the name of an ionic compound it forms?
a. Mn
b. Fe
c. Cu
d. Ca
13. The nucleus of an atom contains \qquad .
a. electrons
c. protons and neutrons
b. protons, electrons, neutrons
d. protons and electrons
14. The element \qquad is the most similar to strontium in chemical and physical properties.
a. Li
c. Ba
b. Rb
d. Cs
15. Horizontal rows of the periodic table are known as \qquad .
a. periods
c. metalloids
b. groups
d. families
16. Vertical columns of the periodic table are known as \qquad -.
a. metals
c. groups
b. periods
d. octaves
17. Elements in group 1 are known as \qquad
a. chalcogens
c. alkaline earth metals
b. alkali metals
d. halogens
18. Potassium is a \qquad and chlorine is a \qquad .
a. metal, nonmetal
c. nonmetal, metal
b. metal, metalloid
d. nonmetal, metalloid
19. \qquad are found uncombined, as monatomic species in nature.
a. noble gases
c. halogens
b. alkali metals
d. transition metals
20. When a metal and a nonmetal react, the \qquad tends to lose electrons to form $\mathrm{a}(\mathrm{n})$ \qquad .
a. metal, cation
c. metal, anion
b. nonmetal, cation
d. nonmetal, anion
21. When a metal and a nonmetal react, the \qquad tends to gain electrons to form $\mathrm{a}(\mathrm{n})$ \qquad
a. metal, cation
c. metal, anion
b. nonmetal, cation
d. nonmetal, anion
22. The empirical formula of a compound with molecules containing 14 carbon atoms, 16 hydrogen atoms and 8 oxygen atoms is \qquad
\qquad
a. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{8}$
b. $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{4}$
c. CHO
d. $\mathrm{C}_{3.5} \mathrm{H}_{4} \mathrm{O}_{2}$
23. What is the formula of the compound formed between strontium ions and nitrogen ions?
a. SrN
b. $\quad \mathrm{Sr}_{3} \mathrm{~N}_{2}$
c. $\mathrm{Sr}_{3} \mathrm{~N}_{4}$
d. SrN_{2}
24. The formula of a salt is XCl_{2}. The X -ion in this salt has 28 electrons. The metal X is \qquad .
a. Ni
b. Fe
c. Zn
d. Pd
25. The charge on the manganese in the salt MnF_{3} is \qquad -.
a. $\quad+1$
b. -2
c. -1
d. +3
26. Aluminum reacts with a certain nonmetallic element to form a compound with the general form AlX. Element X is a natural diatomic gas at room temperature. Element X must be \qquad -.
a. oxygen
c. sulfur
b. fluorine
d. nitrogen
27. All atoms of a given element have the same \qquad .
a. mass
c. number of neutrons
b. number of protons
d. number of electrons and neutrons
28. Vanadium has two naturally occurring isotopes, ${ }^{50} \mathrm{~V}$ and ${ }^{51} \mathrm{~V}$. The percent abundance of ${ }^{50} \mathrm{~V}$ is \qquad and of ${ }^{51} \mathrm{~V}$ is \qquad .
a. $6.00 \%, 94.00 \%$
b. $49.00 \%, 51.00 \%$
c. $99.00 \%, 1.00 \%$
d. $25.00 \%, 75.00 \%$
29. An unknown element is found to have three naturally occurring isotopes with atomic masses of 35.9675 (0.337%), 37.9627 (0.063%) and $39.9624(99.600 \%)$. Which of the following is the known element?
a. Ar
b. Cl
c. K
d. Ca
30. Of the following, only \qquad is not a metalloid.
a. B
c. Al
b. Si
d. Ge
31. Of the choices below, which one is not an ionic compound?
a. $\quad \mathrm{PCl}_{5}$
b. RbCl
c. MoCl_{6}
d. PbCl_{2}
32. Which metal does not form cations of differing charges?
a. Na
b. Co
c. Cu
d. Fe
33. Compared to the charge and mass of a proton, an electron has
a. the same charge and a smaller mass
c. an opposite charge and a smaller mass
b. the same charge and the same mass
d. an opposite charge and the same mass
34. When alpha particles are used to bombard gold foil, most of the alpha particles pass through undeflected. This result indicates that most of the volume of a gold atom consists of
a. deuterons
c. protons
b. neutrons
d. unoccupied space
35. Which symbols represent atoms that are isotopes?
a. $\quad \mathrm{C}-14$ and $\mathrm{N}-14$
c. I-131 and I-131
b. O-16 and O-18
d. $\mathrm{Rn}-222$ and $\mathrm{Ra}-222$
36. Atoms of elements in a group on the Periodic Table have similar chemical properties. This similarity is most closely related to the atoms'
a. number of principal energy levels
c. atomic numbers
b. number of valence electrons
d. atomic masses
37. What is the molar mass of $\mathrm{K}_{2} \mathrm{CO}_{3}$?
a. $\quad 138 \mathrm{~g} / \mathrm{mol}$
b. $\quad 106 \mathrm{~g} / \mathrm{mol}$
c. $\quad 99 \mathrm{~g} / \mathrm{mol}$
d. $67 \mathrm{~g} / \mathrm{mol}$
38. What is the total number of atoms contained in 2.00 moles of nickel?
a. $\quad 58.9$
b. 118
c. $\quad 6.02 \times 10^{23}$
d. 1.2×10^{24}
39. What is the percent by mass of oxygen in magnesium oxide, MgO ?
a. 20%
b. 40%
c. 50%
d. 60%
40. What is the mass in grams of 3.0×10^{23} molecules of CO_{2} ?
a. 22 g
b. $\quad 44 \mathrm{~g}$
c. 66 g
d. 88 g
41. Which pair of atoms constitutes a pair of isotopes for the same element?

d.

42. The mass number of an atom is equal to:
a. protons + electrons
c. protons + neutrons
b. electrons + neutrons
d. protons + neutrons + electrons
43. What term is used to describe the spitting of two nuclei?
a. fusion
c. ionization
b. fission
d. deionization
44. Which of the following puts elements in the correct order of increasing atomic radius?
a. $\mathrm{Cl}, \mathrm{Bi}, \mathrm{P}$
b. $\mathrm{Sr}, \mathrm{Mg}, \mathrm{Al}$
c. $\mathrm{Si}, \mathrm{F}, \mathrm{Cl}$
d. $\mathrm{B}, \mathrm{Li}, \mathrm{K}$
45. What particle goes in the blank?

$$
{ }_{84}^{210} \mathrm{Po} \rightarrow{ }_{82}^{206} \mathrm{~Pb}+
$$

a. alpha particle
c. gamma ray
b. beta particle
d. beta emission
46. This type of radiation is released when $\mathrm{Rn}-224$ to $\mathrm{Po}-220$.
a. alpha particle
c. gamma ray
b. beta particle
d. beta emission
47. What is the missing product of the following?

$$
{ }_{90}^{230} T h \rightarrow{ }_{-1}^{0} e+
$$

a. ${ }_{91}^{230} \mathrm{Th}$
b. ${ }_{89}^{230} A c$
c. ${ }_{89}^{231} A c$
d. ${ }_{91}^{230} \mathrm{~Pa}$

